Home
Class 12
MATHS
Which one of the following function(s) i...

Which one of the following function(s) is/are homogeneous? `(a) f(x,y)= (x-y)/(x^2 + y^2)` (b) `f(x,y)= x^(1/3)y^(-2/3)tan^-1(x/y)` (c) `f(x,y)=x(lnsqrt(x^2+y^2)-lny)+ye^(x/y)` (d) none of these

A

`f(x,y) = (x-y)/(x^(2)+y^(2))`

B

`f(x,y) = x^(1/3)y^(-2/3) tan^(-1)x/y`

C

`f(x,y) = x(" ln "sqrtx^(2)+y^(2))-" ln "y+ye^(x//y)`

D

`f(x,y) = x[" ln "(2x^(2)+y^(2))x -" ln "(x+y)]+y^(2)tan(x+2y)/(3x-y)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

a) `f(lambdax,lambday)=(lambda(x-y))/(lambda^(2)(x^(2)+y^(2)))=lambda^(-1)f(x,y)`
Thus, it is homogenous of degree `-1`
b) `f(lambdax,lambday)=(lambdax)^(1//3)(lambday)^(-2//3)tan^(-1)x/y`
`=lambda^(-1//3)x^(1//3)tan^(-1)x/y`
`=lambda^(-1//3)f(x,y)`
c) `f(lambdax,lambday) = lambdax("ln"sqrt(lambda^(2)(x^(2)+y^(2))-"ln "lambday))+lambdaye^(x//y)`
`=lambdax["ln"((lambdasqrt(x^(2)+y^(2)))/(lambday))]+lambdaye^(x//y)`
`lambda[x("ln "sqrt(x^(2)+y^(2))-"ln"y)+ye^(x//y)]`
`=lambdaf(x,y)`
Thus, it is homogeneous.
d) `f(lambdax,lambday)=lambdax["ln "(2lambda^(2)x^(2)+lambda^(2)y^(2))(lambdaxlambda(x+y))]+lambda^(2)x^(2)tan(x+2y)/(3x-y)`
`=lambda x["ln "(2x^(2)+y^(2))/(x(x+y))]+lambda^(2)x^(2)tan(x+2y)/(3x-y)`
Thus, it is non-homogeneous.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension types|21 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Numerical value type|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPES|74 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Which of the following functions have the graph symmetrical about the origin? (a) f(x) given by f(x)+f(y)=f((x+y)/(1-x y)) (b) f(x) given by f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2)) (c) f(x) given by f(x+y)=f(x)+f(y)AAx , y in R (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= 2f(x)dotf(y) (b) f(x)dotf(y) (f(x))/(f(y)) (d) none of these

If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

If f(x)=lim_(n->oo)n(x^(1/n)-1),then for x >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

Find f(x, y) if f(x + 2y, 2x + y) = 2xy.

Which one of the following is not a function? {(x , y): x , y in R , x^2=y} b. {(x , y): x , y in R , y^2=x} c. {(x , y): x , y in R , x=y^3} d. {(x , y): x , y in R , y=x^3}

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then