Home
Class 12
MATHS
Let y be an implicit function of x de...

Let `y` be an implicit function of `x` defined by `x^(2x)-2x^xcot y-1=0.` Then `y '(1)` equals: `1` b. `log2` c. `-log2` d. `-1`

A

-1

B

1

C

log 2

D

`-log 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) at \( x = 1 \) for the implicit function defined by the equation: \[ x^{2x} - 2x^x \cot y - 1 = 0 \] ### Step 1: Substitute \( x = 1 \) to find \( y \) First, we substitute \( x = 1 \) into the equation: \[ 1^{2 \cdot 1} - 2 \cdot 1^1 \cot y - 1 = 0 \] This simplifies to: \[ 1 - 2 \cot y - 1 = 0 \] This further simplifies to: \[ -2 \cot y = 0 \] Thus, we have: \[ \cot y = 0 \] The solution to \( \cot y = 0 \) is: \[ y = \frac{\pi}{2} \] ### Step 2: Differentiate the equation implicitly Now, we differentiate the original equation with respect to \( x \): \[ \frac{d}{dx}(x^{2x}) - \frac{d}{dx}(2x^x \cot y) - \frac{d}{dx}(1) = 0 \] ### Step 3: Differentiate \( x^{2x} \) Using the product rule and chain rule, we differentiate \( x^{2x} \): Let \( u = x^{2x} \). Then, \[ \frac{du}{dx} = x^{2x} \left( 2 \ln x + 2 \right) \] ### Step 4: Differentiate \( 2x^x \cot y \) Now we differentiate \( 2x^x \cot y \): Using the product rule: \[ \frac{d}{dx}(2x^x \cot y) = 2 \left( x^x \ln x \cot y + x^x \frac{d(\cot y)}{dx} \right) \] Using the chain rule for \( \cot y \): \[ \frac{d(\cot y)}{dx} = -\csc^2 y \frac{dy}{dx} \] Thus, we have: \[ \frac{d}{dx}(2x^x \cot y) = 2 \left( x^x \ln x \cot y - x^x \csc^2 y \frac{dy}{dx} \right) \] ### Step 5: Substitute back into the differentiated equation Now substituting back into the differentiated equation: \[ x^{2x} (2 \ln x + 2) - 2 \left( x^x \ln x \cot y - x^x \csc^2 y \frac{dy}{dx} \right) = 0 \] ### Step 6: Evaluate at \( x = 1 \) and \( y = \frac{\pi}{2} \) Substituting \( x = 1 \) and \( y = \frac{\pi}{2} \): 1. \( x^{2x} = 1^{2 \cdot 1} = 1 \) 2. \( \ln 1 = 0 \) 3. \( \cot \frac{\pi}{2} = 0 \) 4. \( \csc^2 \frac{\pi}{2} = 1 \) Thus, the equation simplifies to: \[ 1(2 \cdot 0 + 2) - 2(1 \cdot 0 - 1 \cdot \frac{dy}{dx}) = 0 \] This simplifies to: \[ 2 + 2 \frac{dy}{dx} = 0 \] ### Step 7: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ 2 \frac{dy}{dx} = -2 \] Thus, \[ \frac{dy}{dx} = -1 \] ### Final Answer So, the value of \( \frac{dy}{dx} \) at \( x = 1 \) is: \[ \frac{dy}{dx} = -1 \] ### Conclusion The correct option is: **d. -1**

To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) at \( x = 1 \) for the implicit function defined by the equation: \[ x^{2x} - 2x^x \cot y - 1 = 0 \] ### Step 1: Substitute \( x = 1 \) to find \( y \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y is a function of x given by 2log (y-1)-log x-log (y-2)=0 , then

int_0^oo1/(1+e^x)dx equals a. log2-1 b. log2 c. log4-1 d. log2

If y is a function of x and log(x+y)-2x y=0, then the value of y^(prime)(0) is (a)1 (b) -1 (c) 2 (d) 0

If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

Let y(x) is the solution of differential equation x(dy)/(dx)+y=x log_ex and 2y(2)=log_e 4-1 . Then y(e) is equal to (A) e^2 /2 (B) e/2 (C) e/4 (D) e^2/4

For relation 2 log y - log x - log ( y-1) =0

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Given system of simultaneous equations 2^x\ . 5^y=1\ a n d\ 5^(x+1). 2^y=2. Then - (a) . x=(log)_(10)5\ a n d\ y=(log)_(10)2 (b) . x=(log)_(10)2\ a n d\ y=(log)_(10)5 (c) . x=(log)_(10)(1/5)\ a n d\ y=(log)_(10)2 (d) . x=(log)_(10)5\ a n d\ y=(log)_(10)(1/2)

Write explicit functions of y defined by the following equations and also find the domains of definitions of the given implicit functions: x+|y|=2y (b) e^y-e^(-y)=2x (c) 10^x+10^y=10 (d) x^2-sin^(-1)y=pi/2