Home
Class 12
MATHS
L=lim(xrarr0) (sin(sinx)-sinx)/(ax^(5)+b...

`L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12)`
The value/values of a is

A

`in` R

B

2

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3 + c} = -\frac{1}{12} \] we will follow these steps: ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator and denominator approach 0. Therefore, we have a \( \frac{0}{0} \) indeterminate form, which allows us to apply L'Hôpital's Rule. ### Step 2: Set up the limit The limit can be rewritten as: \[ L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3 + c} \] ### Step 3: Determine the condition for \( c \) For the limit to exist and not be equal to 0, we need to ensure that the denominator does not approach a non-zero value when the numerator is 0. Thus, we set \( c = 0 \) to ensure the denominator approaches 0 as well. ### Step 4: Substitute \( c = 0 \) Now the limit simplifies to: \[ L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3} \] ### Step 5: Use Taylor series expansion Using the Taylor series expansion for small \( x \): - \( \sin x \approx x - \frac{x^3}{6} + O(x^5) \) - Therefore, \( \sin(\sin x) \approx \sin\left(x - \frac{x^3}{6}\right) \) Using the Taylor expansion for \( \sin \): \[ \sin\left(x - \frac{x^3}{6}\right) \approx \left(x - \frac{x^3}{6}\right) - \frac{1}{6}\left(x - \frac{x^3}{6}\right)^3 + O(x^5) \] Calculating \( \sin(\sin x) - \sin x \): \[ \sin(\sin x) - \sin x \approx \left(-\frac{x^3}{6} + O(x^5)\right) - \left(-\frac{x^3}{6} + O(x^5)\right) = O(x^5) \] ### Step 6: Substitute back into the limit Now we have: \[ L = \lim_{x \to 0} \frac{O(x^5)}{ax^5 + bx^3} \] ### Step 7: Factor out \( x^3 \) from the denominator Factoring out \( x^3 \): \[ L = \lim_{x \to 0} \frac{O(x^5)}{x^3(ax^2 + b)} = \lim_{x \to 0} \frac{O(x^5)}{x^3} \cdot \frac{1}{ax^2 + b} \] ### Step 8: Evaluate the limit As \( x \to 0 \), \( O(x^5)/x^3 \to 0 \) and \( ax^2 + b \to b \). Thus, the limit becomes: \[ L = \lim_{x \to 0} \frac{0}{b} = 0 \] ### Step 9: Apply L'Hôpital's Rule Since we have \( 0/0 \) form, we apply L'Hôpital's Rule: Differentiate the numerator and denominator: 1. For the numerator: \( \frac{d}{dx}(\sin(\sin x) - \sin x) = \cos(\sin x) \cos x - \cos x \) 2. For the denominator: \( \frac{d}{dx}(ax^5 + bx^3) = 5ax^4 + 3bx^2 \) ### Step 10: Evaluate the new limit Substituting \( x = 0 \): \[ L = \frac{\cos(0)(\cos(0) - 1)}{0} = \frac{1(1 - 1)}{0} = 0 \] ### Step 11: Set up the equation We need to find \( a \) such that: \[ L = -\frac{1}{12} \] From the previous steps, we can conclude that: \[ \frac{-1}{6b} = -\frac{1}{12} \implies 6b = 12 \implies b = 2 \] ### Conclusion Since \( b = 2 \) and \( c = 0 \), \( a \) can take any real value. Thus, the value of \( a \) is: \[ \text{The value of } a \text{ is any real number.} \]

To solve the limit problem given by \[ L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3 + c} = -\frac{1}{12} \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is

lim_(xrarr0) (sinax)/(bx)

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

lim_(x->0) (sin(sinx)-sinx)/(ax^3+bx^5+c)=-1/12 then

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(xrarr0) (ax+b)/(cx+1)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?