Home
Class 12
MATHS
If underset(xrarroo)(lim)xlog(e)(|(alpha...

If `underset(xrarroo)(lim)xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5.` where `alpha, beta, gamma` are finite real numbers, then

A

a = 2

B

b = -4

C

c = 2

D

a + b + c = 8

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`underset(xrarr0)(lim)(ae^(x)+bcosx+ce^(-x))/(e^(2x)-2e^(x)+1)`
`rArr underset(xrarr0)(lim)(a(1+x+(x^(2))/(2)+...)+b(1-(x^(2))/(2)...)+c(1-x+(x^(2))/(2)))/(x^(2)).((x)/(e^(x)-1))^(2)=4`
`rArr" "a+b+c=0, a-c=0 rArr a=c`
`rArr" "(a-b+c)/(c)=4`
`rArr" "a-b+c=8 rArr 2b = -8 rArr b=-4`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarroo) xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5. where alpha, beta, gamma are finite real numbers, then

If A^(-1)=[(sin^2alpha,0,0),(0,sin^2 beta,0), (0,0,sin^2gamma)] and B^(-1)=[(cos^2alpha,0,0),(0,cos^2 beta,0), (0,0,cos^2gamma)] where alpha, beta, gamma are any real numbers and C=A^(-5)+B^(-5)+5A^(-1)B^(-1)(A^(-3) +B^(-3))+10 A^(-2)B^(-2)(A^(-1)+B^(-1)) then find |C|

Show that [[x-3,x-4,x-alpha],[x-2,x-3,x-beta],[x-1,x-2,x-gamma]]=0 where alpha,beta,gamma are in AP

Let alpha,beta, gamma be three real numbers satisfying [(alpha,beta,gamma)][(2,-1,1),(-1,-1,-2),(-1,2,1)]=[(0,0,0)] . If the point A(alpha, beta, gamma) lies on the plane 2x+y+3z=2 , then 3alpha+3beta-6gamma is equal to

If (1+alpha)/(1-alpha),(1+beta)/(1-beta), (1+gamma)/(1-gamma) are the cubic equation f(x) = 0 where alpha,beta,gamma are the roots of the cubic equation 3x^3 - 2x + 5 =0 , then the number of negative real roots of the equation f(x) = 0 is :

If (1+alpha)/(1-alpha),(1+beta)/(1-beta), (1+gamma)/(1-gamma) are the cubic equation f(x) = 0 where alpha,beta,gamma are the roots of the cubic equation 3x^3 - 2x + 5 =0 , then the number of negative real roots of the equation f(x) = 0 is :

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals (A) alpha beta gamma (B) alpha +beta + gamma (C) 0 (D) none of these

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is