Home
Class 12
MATHS
Which of the following functions is/are ...

Which of the following functions is/are discontinuous at `x=1?` `f(x)=1/(1+2^(t a n x))` `g(x)=(lim)_(xvecoo)1/(1+n in s^2(pix))` `h(x)=2^-2^(((1/(1-x)))),x!=1a n dh(1)=1` `varphi(x)=(x-1)/(|x-1|+2(x-1)^2),x=1a n dvarphi(1)=1`

A

`f(x)=(1)/(1+2^(tanx))`

B

`g(x)=underset(n rarroo)(lim)(1)/(1+n sin^(2)(pix))`

C

`h(x)=2^(-2^(((1)/(1-X)))),x ne 1 andh(1)=1`

D

`phi(x)=(x-1)/(|x-1|+2(x-1)^(2)),x ne 1 and phi(1)=1`

Text Solution

Verified by Experts

The correct Answer is:
A

(a) Clearly, f(x) is continuous at x = 1.
(b) `g(1^(+))=0,g(1)=1rArrg(x)` is discontinuous at x = 1
(c) `h(1^(+))=1 and h(1^(-))=0rArr h(x)` is discontinuous at x = 1
(d) `phi(1^(+))=1 and phi(1^(-))=-1rArr phi(x)` is discontinuous at x = 1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvecoo)((a_1^( 1/x)+a_2^ (1/x)+ --+a_ n^(1/x))/n)^(n x)

f(x)={(1-x^n)/(1-x),\ \ \( x!=1, (n-1) at x=1, n in N at x=1

If x = sqrt((n-1)/(n+1)) , find the value of (x/(x-1))^2+(x/(x+1))^2

Examine the continuity or discontinuity of the following : (i) f(x) = [x] + [-x] (ii) g(x) = lim_(n to oo)(x^(2n) -1)/(x^(2n) + 1)

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

f(x)=(lim)_(n->oo)(sin(pix/2))^(2n) for x >0,x!=1 ,and f(1)=0. Discuss the continuity at x=1.

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

Let the given function is differentiable at x = 1. f(x)={{:(lim_(nrarroo) (ax(x-1)(cot.(pix)/(4))^(n)+(px^(2)+2))/((cot,(pix)/(4))^(n)+1)",",x in(0,1)uu(1,2)),(0",",x=1):} Then the value of |a+p| is

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)