Home
Class 12
MATHS
If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/...

If `int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x)-1))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C,` then

A

(a) `u=e^(x)+e^(-x)`

B

(b) `u=e^(x)-e^(-x)`

C

(c) `t=e^(x)+e^(-x)`

D

(d) `t=e^(x)-e^(-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation, we need to evaluate the left-hand side (LHS) and compare it with the right-hand side (RHS) to find the values of \( u \) and \( t \). ### Step-by-Step Solution: 1. **Start with the LHS:** \[ \int \frac{e^{4x} - 1}{e^{2x} \log\left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)} \, dx \] 2. **Simplify the integrand:** We can rewrite the integrand: \[ \frac{e^{4x} - 1}{e^{2x}} = e^{2x} - e^{-2x} \] Thus, the integral becomes: \[ \int (e^{2x} - e^{-2x}) \log\left(\frac{e^{2x} + 1}{e^{2x} - 1}\right) \, dx \] 3. **Use properties of logarithms:** The logarithm can be separated: \[ \log\left(\frac{e^{2x} + 1}{e^{2x} - 1}\right) = \log(e^{2x} + 1) - \log(e^{2x} - 1) \] 4. **Rewrite the integral:** The integral can now be expressed as: \[ \int (e^{2x} - e^{-2x}) \left(\log(e^{2x} + 1) - \log(e^{2x} - 1)\right) \, dx \] 5. **Substitutions:** Let: \[ a = e^{x} + e^{-x}, \quad b = e^{x} - e^{-x} \] Then, we differentiate: \[ da = (e^{x} - e^{-x}) \, dx \quad \text{and} \quad db = (e^{x} + e^{-x}) \, dx \] 6. **Express the integral in terms of \( a \) and \( b \):** The integral can be transformed into: \[ \int a \log a \, da - \int b \log b \, db \] 7. **Integrate using integration by parts:** For \( \int a \log a \, da \): \[ = \frac{a^2}{2} \log a - \frac{a^2}{4} \] For \( \int b \log b \, db \): \[ = \frac{b^2}{2} \log b - \frac{b^2}{4} \] 8. **Combine the results:** Thus, we have: \[ \frac{a^2}{2} \log a - \frac{a^2}{4} - \left(\frac{b^2}{2} \log b - \frac{b^2}{4}\right) + C \] 9. **Compare with the RHS:** The RHS is given as: \[ \frac{t^2}{2} \log t - \frac{t^2}{4} - \frac{u^2}{2} \log u + \frac{u^2}{4} + C \] By comparing coefficients, we identify: \[ t = a = e^{x} + e^{-x}, \quad u = b = e^{x} - e^{-x} \] ### Final Values: Thus, the values of \( t \) and \( u \) are: \[ t = e^{x} + e^{-x}, \quad u = e^{x} - e^{-x} \]

To solve the given integral equation, we need to evaluate the left-hand side (LHS) and compare it with the right-hand side (RHS) to find the values of \( u \) and \( t \). ### Step-by-Step Solution: 1. **Start with the LHS:** \[ \int \frac{e^{4x} - 1}{e^{2x} \log\left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (e^x)/e^(2x-4) dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int(x e^(2x))/((1+2x)^2)dx

int(e^x)/((1+e^x)(2+e^x))dx

inte^(2x)/(4sqrt(e^x+1))dx

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int(e^(x))/(x+2)[1+(x+2)log(x+2)]dx=

Evaluate: int(e^x)/(1+e^(2x))dx