Home
Class 12
MATHS
((dy)/(dx))^(2) + 2y cot x (dy)/(dx) = y...

`((dy)/(dx))^(2) + 2y cot x (dy)/(dx) = y^(2)` has the solution

A

`y + (c)/(1+cos x) = 0`

B

`y = (c)/(1-cos x)`

C

`x = 2 sin^(-1) sqrt((c)/(2y))`

D

`x = 2 cos^(-1) ((c)/(2y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \left(\frac{dy}{dx}\right)^2 + 2y \cot x \frac{dy}{dx} = y^2, \] we will follow these steps: ### Step 1: Substitute \( \frac{dy}{dx} \) with \( t \) Let \[ \frac{dy}{dx} = t. \] Then the equation becomes: \[ t^2 + 2y \cot x \cdot t = y^2. \] ### Step 2: Rearrange the equation Rearranging gives us a quadratic equation in \( t \): \[ t^2 + 2y \cot x \cdot t - y^2 = 0. \] ### Step 3: Apply the quadratic formula Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = 2y \cot x \), and \( c = -y^2 \). Thus, \[ t = \frac{-2y \cot x \pm \sqrt{(2y \cot x)^2 - 4 \cdot 1 \cdot (-y^2)}}{2 \cdot 1}. \] ### Step 4: Simplify the expression Calculating the discriminant: \[ (2y \cot x)^2 + 4y^2 = 4y^2 (\cot^2 x + 1) = 4y^2 \csc^2 x. \] So, \[ t = \frac{-2y \cot x \pm 2y \csc x}{2} = -y \cot x \pm y \csc x. \] ### Step 5: Substitute back for \( \frac{dy}{dx} \) Now substituting back for \( t \): \[ \frac{dy}{dx} = -y \cot x \pm y \csc x. \] ### Step 6: Separate variables We can separate variables: \[ \frac{dy}{y} = (-\cot x \pm \csc x) dx. \] ### Step 7: Integrate both sides Integrating both sides: \[ \int \frac{dy}{y} = \int (-\cot x \pm \csc x) dx. \] The left side integrates to: \[ \ln |y| = \int (-\cot x \pm \csc x) dx. \] ### Step 8: Solve the integral on the right The integral of \( -\cot x \) is \( -\ln |\sin x| \) and the integral of \( \csc x \) is \( -\ln |\csc x + \cot x| \). Therefore, we have: \[ \ln |y| = -\ln |\sin x| \pm (-\ln |\csc x + \cot x|) + C. \] ### Step 9: Combine logarithmic terms This can be simplified to: \[ \ln |y| = \ln \left(\frac{1}{\sin x}\right) + \ln |\csc x + \cot x| + C. \] ### Step 10: Exponentiate to solve for \( y \) Exponentiating both sides gives: \[ y = e^C \cdot \frac{\csc x + \cot x}{\sin x}. \] Let \( e^C = k \) (a constant), we have: \[ y = k \cdot \frac{\csc x + \cot x}{\sin x}. \] ### Final Result Thus, the solution to the differential equation is: \[ y = k \cdot \frac{1 + \cos x}{\sin x}. \]

To solve the differential equation \[ \left(\frac{dy}{dx}\right)^2 + 2y \cot x \frac{dy}{dx} = y^2, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

x+y(dy/dx)=2y

The solution of ((dy)/(dx))^(2) + (2x + y) (dy)/(dx) + 2xy = 0 , is

x^2y - x^3 dy/dx = y^2 cosx

The differential equation (dy)/(dx)+(y^(2))/(x^(2))=(y)/(x) has the solution

Solve: 2x y(dy)/(dx)=x^2+y^2

Solve ((dy)/(dx))^2-x(dy)/(dx)+y=0

Solution of (dy)/(dx)+2x y=y is

Find (dy)/(dx)if 2=(x+y)^2

Solve (x+y)^(2)(dy)/(dx)=a^(2)

dy/dx = (2x-y)/(x-2y)