Home
Class 11
CHEMISTRY
Determine the potential of the following...

Determine the potential of the following cell:
`Pt|H_2(g,0.1 "bar")|H^+(aq,10^(-3)M"||"MnO_4^-)(aq),0.1M)`
`Mn^(2+)(aq,0.01M),H^+(aq,0.01M)|Pt`
Given : `E_(MnO_4^(-)|Mn^(2+))^(@)=1.51V`
(a)1.54V
(b)1.48V
(c)1.84V
(d)none of these

A

1.54V

B

1.48V

C

1.84V

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the potential of the given electrochemical cell, we can follow these steps: ### Step 1: Identify the half-reactions The cell notation is given as: \[ \text{Pt} | \text{H}_2(g, 0.1 \text{ bar}) | \text{H}^+(aq, 10^{-3} M) || \text{MnO}_4^-(aq, 0.1 M), \text{Mn}^{2+}(aq, 0.01 M), \text{H}^+(aq, 0.01 M) | \text{Pt} \] At the anode, hydrogen gas is oxidized: \[ \text{H}_2(g) \rightarrow 2 \text{H}^+ + 2e^- \] At the cathode, the reduction of permanganate occurs: \[ \text{MnO}_4^- + 8 \text{H}^+ + 5e^- \rightarrow \text{Mn}^{2+} + 4 \text{H}_2O \] ### Step 2: Standard Electrode Potentials The standard electrode potential for the reduction of permanganate is given as: \[ E^\circ(\text{MnO}_4^-/\text{Mn}^{2+}) = 1.51 \text{ V} \] The standard electrode potential for the hydrogen half-reaction is: \[ E^\circ(\text{H}^+/H_2) = 0 \text{ V} \] ### Step 3: Calculate the standard cell potential \(E^\circ_{\text{cell}}\) The standard cell potential can be calculated using: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] \[ E^\circ_{\text{cell}} = 1.51 \text{ V} - 0 \text{ V} = 1.51 \text{ V} \] ### Step 4: Determine the number of electrons transferred From the half-reactions: - The anode reaction involves 2 electrons. - The cathode reaction involves 5 electrons. To balance the number of electrons, we multiply the anode reaction by 5 and the cathode reaction by 2: - Anode: \( 5 \text{H}_2 \rightarrow 10 \text{H}^+ + 10e^- \) - Cathode: \( 2 \text{MnO}_4^- + 16 \text{H}^+ + 10e^- \rightarrow 2 \text{Mn}^{2+} + 8 \text{H}_2O \) ### Step 5: Write the net reaction The net reaction combining both half-reactions is: \[ 5 \text{H}_2 + 2 \text{MnO}_4^- + 6 \text{H}^+ \rightarrow 2 \text{Mn}^{2+} + 8 \text{H}_2O \] ### Step 6: Apply the Nernst Equation The Nernst equation is given by: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{n} \log \left( \frac{[\text{products}]}{[\text{reactants}]} \right) \] Where: - \( n = 10 \) (number of electrons transferred) - Products: \( [\text{Mn}^{2+}]^2 \) and \( [\text{H}_2O]^8 \) (water is a liquid and not included in the expression) - Reactants: \( [\text{H}^+]^6 \) and \( [\text{MnO}_4^-]^2 \) and \( P_{\text{H}_2}^5 \) Substituting the concentrations: - \( [\text{Mn}^{2+}] = 0.01 \, M \) - \( [\text{H}^+] = 10^{-3} \, M \) - \( [\text{MnO}_4^-] = 0.1 \, M \) - \( P_{\text{H}_2} = 0.1 \, \text{bar} \) Substituting these values into the Nernst equation: \[ E_{\text{cell}} = 1.51 - \frac{0.059}{10} \log \left( \frac{(0.01)^2}{(10^{-3})^6 \cdot (0.1)^2 \cdot (0.1)^5} \right) \] ### Step 7: Calculate the logarithm and final potential Calculating the logarithm: - The numerator: \( (0.01)^2 = 10^{-4} \) - The denominator: \( (10^{-3})^6 \cdot (0.1)^2 \cdot (0.1)^5 = 10^{-18} \cdot 10^{-2} \cdot 10^{-5} = 10^{-25} \) Thus: \[ \log \left( \frac{10^{-4}}{10^{-25}} \right) = \log(10^{21}) = 21 \] Now substituting back: \[ E_{\text{cell}} = 1.51 - \frac{0.059}{10} \cdot 21 \] \[ E_{\text{cell}} = 1.51 - 0.12459 \] \[ E_{\text{cell}} \approx 1.48 \text{ V} \] ### Final Answer The potential of the cell is **1.48 V**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise LEVEL-3|37 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise Match the column|6 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|14 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos

Similar Questions

Explore conceptually related problems

For the cell, Pt|Cl_2(g,0.4"bar")|Cl^(-)(aq,0.1M)"||"Cl^(-)(aq),0.01M)|Cl_2(g,0.2"bar")|pt

Calculate the cell potential of following cell Pt(s)|H_(2)(g)"(0.1 bar)"|BOH(0.1M)||HA(0.1M)|H_(2)(g)("1 bar")|Pt Given K_(a)(HA)=10^(-7), K_(b)(BOH)=10^(-5)

Write cell reaction of the following cells: (a). Pt|Fe^(2+),Fe^(3+)||MnO_(4)^(-),Mn^(2+),H^(+)|Pt (b). Pt,Cl_(2)|Cl^(-)(aq)||Ag^(+)(aq)|Ag

The pH of LHE in the following cell is : Pt, H_(2)(1atm)|H^(o+)(x M)||H^(o+)(0.1M)|H_(2)(0.1atm)Pt E_(cell)=0.295V .

What will be the emf for the given cell ? Pt|H_(2)(g,P_(1))|H^(+)(aq)|H_(2)(g,P_(2))|Pt

What will be the emf for the given cell ? Pt|H_(2)(g,P_(1))|H^(+)(aq)|H_(2)(g,P_(2))|Pt

What will be the emf for the given cell ? Pt|H_(2)(g,P_(1))|H^(+)(aq)|H_(2)(g,P_(2))|Pt

Calculate the e.m.f. of the following cell at 298K : Pt(s)|Br_(2)(l)|Br^(-)(0.010M)||H^(+)(0.030M)|H_(2)(g)(1"bar")|Pt(s) Given : E_((1)/(2)Br_(2)//Br^(-))^(@)=+1.08V .

pH of the anodic solution of the following cell is Pt, H_2(1atm)|H^+(xM)||H^(+)(1M)|H_2(1 atm ),Pt if E_("cell") =0.2364V.

For the cell, Pt|Cl_2(g,0.4"bar")|Cl^(-)(aq,0.1M)"||"Cl^(-)(aq),0.01M)|Cl_2(g,0.2"bar")|pt Emf is? (a)0.051V (b)-0.051V (c)0.102V (d)0.0255V