Home
Class 12
MATHS
Integrating by parts, derive reduction f...

Integrating by parts, derive reduction formulas for calculating the following integrals :
(a) `I_(n) = int (dx)/( (x^(2) + a^(2) )^(n) )`,

Text Solution

AI Generated Solution

The correct Answer is:
To derive the reduction formula for the integral \[ I_n = \int \frac{dx}{(x^2 + a^2)^n}, \] we will use the method of integration by parts. Let's go through the steps systematically. ### Step 1: Choose functions for integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du. \] Let: - \( u = \frac{1}{(x^2 + a^2)^{n-1}} \) (which will be differentiated), - \( dv = \frac{dx}{(x^2 + a^2)} \) (which will be integrated). ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): 1. Differentiate \( u \): \[ du = -\frac{(n-1) \cdot 2x}{(x^2 + a^2)^{n}} \, dx = -\frac{2(n-1)x}{(x^2 + a^2)^{n}} \, dx. \] 2. Integrate \( dv \): \[ v = \int \frac{dx}{(x^2 + a^2)} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right). \] ### Step 3: Apply integration by parts Now we apply the integration by parts formula: \[ I_n = uv - \int v \, du. \] Substituting \( u \), \( v \), and \( du \): \[ I_n = \frac{1}{(x^2 + a^2)^{n-1}} \cdot \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) - \int \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) \left(-\frac{2(n-1)x}{(x^2 + a^2)^{n}}\right) \, dx. \] ### Step 4: Simplifying the integral This gives us: \[ I_n = \frac{1}{a(x^2 + a^2)^{n-1}} \tan^{-1}\left(\frac{x}{a}\right) + \frac{2(n-1)}{a} \int \frac{x \tan^{-1}\left(\frac{x}{a}\right)}{(x^2 + a^2)^{n}} \, dx. \] ### Step 5: Rearranging to find the reduction formula Now, we can rearrange the terms to isolate \( I_n \): \[ I_n = \frac{1}{a(x^2 + a^2)^{n-1}} \tan^{-1}\left(\frac{x}{a}\right) + \frac{2(n-1)}{a} I_{n-1}. \] ### Step 6: Final reduction formula Thus, we have derived the reduction formula: \[ I_n = \frac{1}{a(x^2 + a^2)^{n-1}} \tan^{-1}\left(\frac{x}{a}\right) + \frac{2(n-1)}{a} I_{n-1}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Integrating by parts, derive reduction formulas for calculating the following integrals : (c ) I_(n) = int ( a^(2) - x^(2) )^(n) dx .

Evaluate the following integrals : (d) int ( x^( n-1) )/( x^( 2n) + a^(2) ) dx ,

Evaluate the following integrals: int(logx)/(x^(n))dx

Integrate the following integral, I=int(4x+1)/(x^(2)+3x+2)dx

Find the following integrals: ( i ) int(dx)/(x^(2)-16)int(dx)/(sqrt(2x-x^(2)))

Evaluate the following Integrals : int (dx)/(x(x^(n)+1))

Evaluate the following integrals: (i) int_2^3 x^2 dx (ii) int_1^3 x/((x+1)(x+2)) dx

Evaluate the following integration int(x^(4)+x^(2)+1)/(2(1+x^(2)))dx

Evaluate the following integration int 2^(x)*e^(x)*dx

Find the following integration :int_(0)^( pi)[2sin x]dx=