Integrating by parts, derive reduction formulas for calculating the following integrals : (a) `I_(n) = int (dx)/( (x^(2) + a^(2) )^(n) )`,
Text Solution
AI Generated Solution
The correct Answer is:
To derive the reduction formula for the integral
\[
I_n = \int \frac{dx}{(x^2 + a^2)^n},
\]
we will use the method of integration by parts. Let's go through the steps systematically.
### Step 1: Choose functions for integration by parts
We will use the integration by parts formula:
\[
\int u \, dv = uv - \int v \, du.
\]
Let:
- \( u = \frac{1}{(x^2 + a^2)^{n-1}} \) (which will be differentiated),
- \( dv = \frac{dx}{(x^2 + a^2)} \) (which will be integrated).
### Step 2: Differentiate \( u \) and integrate \( dv \)
Now we need to find \( du \) and \( v \):
1. Differentiate \( u \):
\[
du = -\frac{(n-1) \cdot 2x}{(x^2 + a^2)^{n}} \, dx = -\frac{2(n-1)x}{(x^2 + a^2)^{n}} \, dx.
\]
2. Integrate \( dv \):
\[
v = \int \frac{dx}{(x^2 + a^2)} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right).
\]
### Step 3: Apply integration by parts
Now we apply the integration by parts formula:
\[
I_n = uv - \int v \, du.
\]
Substituting \( u \), \( v \), and \( du \):
\[
I_n = \frac{1}{(x^2 + a^2)^{n-1}} \cdot \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) - \int \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) \left(-\frac{2(n-1)x}{(x^2 + a^2)^{n}}\right) \, dx.
\]
### Step 4: Simplifying the integral
This gives us:
\[
I_n = \frac{1}{a(x^2 + a^2)^{n-1}} \tan^{-1}\left(\frac{x}{a}\right) + \frac{2(n-1)}{a} \int \frac{x \tan^{-1}\left(\frac{x}{a}\right)}{(x^2 + a^2)^{n}} \, dx.
\]
### Step 5: Rearranging to find the reduction formula
Now, we can rearrange the terms to isolate \( I_n \):
\[
I_n = \frac{1}{a(x^2 + a^2)^{n-1}} \tan^{-1}\left(\frac{x}{a}\right) + \frac{2(n-1)}{a} I_{n-1}.
\]
### Step 6: Final reduction formula
Thus, we have derived the reduction formula:
\[
I_n = \frac{1}{a(x^2 + a^2)^{n-1}} \tan^{-1}\left(\frac{x}{a}\right) + \frac{2(n-1)}{a} I_{n-1}.
\]
Topper's Solved these Questions
INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION
IA MARON|Exercise 4.3. Integration by Parts|28 Videos
IMPROPER INTEGRALS
IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
INTRODUCTION OF MATHEMATICAL ANALYSIS
IA MARON|Exercise Additional Problems|34 Videos
Similar Questions
Explore conceptually related problems
Integrating by parts, derive reduction formulas for calculating the following integrals : (c ) I_(n) = int ( a^(2) - x^(2) )^(n) dx .
Evaluate the following integrals : (d) int ( x^( n-1) )/( x^( 2n) + a^(2) ) dx ,
Evaluate the following integrals: int(logx)/(x^(n))dx
Integrate the following integral, I=int(4x+1)/(x^(2)+3x+2)dx
Find the following integrals: ( i ) int(dx)/(x^(2)-16)int(dx)/(sqrt(2x-x^(2)))
Evaluate the following Integrals : int (dx)/(x(x^(n)+1))
Evaluate the following integrals: (i) int_2^3 x^2 dx (ii) int_1^3 x/((x+1)(x+2)) dx
Evaluate the following integration int(x^(4)+x^(2)+1)/(2(1+x^(2)))dx
Evaluate the following integration int 2^(x)*e^(x)*dx
Find the following integration :int_(0)^( pi)[2sin x]dx=
IA MARON-INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION-4.4. Reduction Formulas