Home
Class 12
MATHS
I= int "arc" tan x dx....

`I= int "arc" tan x dx`.

Text Solution

Verified by Experts

The correct Answer is:
`= x "arc" tan x - (1)/(2) "In" (1+ x^2) + C`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.2. Integration by Substitution|22 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

I= int "arc" sin x dx .

Integration of other transcendental functions I=int(x arc tan x dx)/(sqrt(1+x^(2))).

int x^(3) "arc" tan x dx .

I= int ( 3x^(2) + 6x +5) "arc" tan x dx .

Compute the integrals : int_(0)^(1) x "arc tan x dx

int ( "arc" sin x dx)/( sqrt( 1+ x)) .

Integration of trigonometric and hyperbolic functions (a) I = int cot^(6) x dx, (b) I = int tan^(3) x dx.

int sqrt(tan x)*dx

int (x tan^-1x dx)

int sqrt(tan x)dx