Home
Class 12
MATHS
If O is the circumcentre and P the ortho...

If O is the circumcentre and P the orthocentre of `Delta ABC`, prove that `vec(OA)+ vec(OB) + vec(OC) =vec(OP)`.

Answer

Step by step text solution for If O is the circumcentre and P the orthocentre of Delta ABC, prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Vectors and Addition of Vectors

    A DAS GUPTA|Exercise Exercise|16 Videos
  • Trigonometrical Inequalities and Inequations

    A DAS GUPTA|Exercise Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If O is the circumcentre and P the orthocentre ( of Delta ABC, prove that )/(OA)+vec OB+vec OC=vec OP

If O( vec0 ) is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. vec(OA)+vec(OB)+vec(OC)=vec(OO') ii. vec(O'A)+vec(O'B)+vec(O'C)=2vec(O'O) iii. vec(AO')+vec(O'B)+vec(O'C)=2 vec(AO)=vec(AP) where AP is the diameter through A of the circumcircle.

Knowledge Check

  • If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

    A
    `3vec(SG)`
    B
    `vec(OS)`
    C
    `vec(SO)`
    D
    `vec(OG)`
  • If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

    A
    `vec(SO)`
    B
    `2vec(SO)`
    C
    `vec(OS)`
    D
    `2vec(OS)`
  • Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

    A
    `vec(0)`
    B
    `-(vec(a)+vec(b)+vec(c))/(2)`
    C
    `vec(a) + vec(b)+vec( c) `
    D
    `(vec(a)+vec(b)+vec(c))/(2)`
  • Similar Questions

    Explore conceptually related problems

    If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

    If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

    If O\ a n d\ O^(prime) are circumcentre and orthocentre of \ A B C ,\ t h e n\ vec O A+ vec O B+ vec O C equals a. 2 vec O O ' b. vec O O ' c. vec O ' O d. 2 vec O ' O

    If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

    Let O be an interior point of Delta ABC such that 2vec OA+5vec OB+10vec OC=vec 0