Home
Class 12
CHEMISTRY
If Ksp of HgSO4, is 6.4 x 10^-5 M^2, the...

If `K_sp` of `HgSO_4, is 6.4 x 10^-5 M^2`, then solubility of the `HgSO_4`, in water will be

A

`5.4*10^-5 M`

B

`8*10^-3 M`

C

`8* 10^-4 M`

D

`6.4* 10^-3 M`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility of \( \text{HgSO}_4 \) in water given its \( K_{sp} \), we can follow these steps: ### Step 1: Write the dissociation equation The dissociation of \( \text{HgSO}_4 \) in water can be represented as: \[ \text{HgSO}_4 (s) \rightleftharpoons \text{Hg}^{2+} (aq) + \text{SO}_4^{2-} (aq) \] ### Step 2: Define solubility Let the solubility of \( \text{HgSO}_4 \) be \( s \) M. This means that at equilibrium: - The concentration of \( \text{Hg}^{2+} \) ions will be \( s \) M. - The concentration of \( \text{SO}_4^{2-} \) ions will also be \( s \) M. ### Step 3: Write the expression for \( K_{sp} \) The solubility product constant \( K_{sp} \) for the dissociation of \( \text{HgSO}_4 \) can be expressed as: \[ K_{sp} = [\text{Hg}^{2+}][\text{SO}_4^{2-}] = s \cdot s = s^2 \] ### Step 4: Substitute the given \( K_{sp} \) We are given: \[ K_{sp} = 6.4 \times 10^{-5} \, M^2 \] Thus, we can set up the equation: \[ s^2 = 6.4 \times 10^{-5} \] ### Step 5: Solve for \( s \) To find \( s \), take the square root of both sides: \[ s = \sqrt{6.4 \times 10^{-5}} \] ### Step 6: Calculate the value Calculating the square root: \[ s = \sqrt{6.4} \times \sqrt{10^{-5}} = 2.52982 \times 10^{-2.5} = 2.52982 \times 10^{-3} \approx 8 \times 10^{-3} \, M \] ### Final Answer The solubility of \( \text{HgSO}_4 \) in water is approximately: \[ s \approx 8 \times 10^{-3} \, M \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOCK TEST 12

    AAKASH INSTITUTE|Exercise Exercise|14 Videos
  • MOCK TEST 14

    AAKASH INSTITUTE|Exercise Exercise|25 Videos

Similar Questions

Explore conceptually related problems

The K_(sp) of BaSO_(4) is 1.6 xx 10^(-9) . Find the solubility of BaSO_(4) in gL^(-1) in a. Pure water b. 0.1M Ba(NO_(3))_(2)

K_(SP) of BaSO_(4) is 1.5xx10^(-9) . Calculate is solubility in: (a) Pure water, , (b) 0.10MBaCI_(2) .

Knowledge Check

  • If K_(sp) for HgSO_(4) is 6.4 xx 10^(-5) , then solubility of the salt is

    A
    `8 xx 10^(-3)`
    B
    `8 xx 10^(-6)`
    C
    `6.4 xx 10^(-5)`
    D
    `6.4 xx 10^(-3)`
  • If K_(sp) for HgSO_(4) is 6.4xx10^(-5) , then solubility of this substance in mole per m^(3) is

    A
    `8xx10^(-3)`
    B
    `6.4xx10^(-5)`
    C
    `8xx10^(-6)`
    D
    None of these
  • If solubility product of HgSO_(4) is 6.4 xx 10^(-5) , then its solubility is

    A
    `8 xx 10^(-3)` mole/litre
    B
    `6.4 xx 10^(-5)` mole/litre
    C
    `6.4 xx 10^(-3)` mole/litre
    D
    `2.8 xx 10^(-6)` mole/litre
  • Similar Questions

    Explore conceptually related problems

    The solubility of lead sulphate in water is 1.03 xx 10^(-4) . Calculate its solubility in a centinormal solution of H_(2)SO_(4). K_(sp) (PbSO_(4))=1.6 xx 10^(-8) .

    The K_(sp) for a sparingly soluble Ag_2CrO_4 is 4xx10^(-12) . The molar solubility of the salt is

    If the solubility of Ag_(2)SO_(4) in 10^(-2)M Na_(2)SO_(4) solution be 2xx10^(-8)M then K_(sp) of Ag_(2)SO_(4) will be

    The solubility of BaSO_(4) in water 2.42 xx 10^(3) gL^(-1) at 298 K. The value of solubility product (K_(sp)) will be (Given molar mass of BASO_(4) = 233 g mol^(-1) )

    M(OH)_(X) has K_(SP) 4xx10^(-12) and solubility 10^(-4) M . The value of x is: