Home
Class 11
MATHS
If the square ABCD where A(0,0), B(2,0),...

If the square ABCD where A(0,0), B(2,0), C(2,2), D(0,2) undergoes the following the transformations successively
(i) `f_(1)(x,y) to f(y,x)`
(ii) `f_(2) (x,y) to f(x + 3y, y)`
(iii) `f_(3) (x,y) to f((x-y)/(2),(x + y)/(2))` then find nature of the final figure of ABCD

Text Solution

Verified by Experts

The correct Answer is:
Parallelogram
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Exercise - 2. 2 (Short answer questions)|7 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise MULTIPLE PRODUCT OF TWO VECTORS|21 Videos
  • COMPOUND ANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) ADVANCED|5 Videos

Similar Questions

Explore conceptually related problems

If f(2x + 3y, 2x-3y)=4xy , then find the value of f(x,y)

If y=f(x)=(2x-1)/(x-2), then f(y)=

Knowledge Check

  • If f(x + y) = f(x) f(y) AA x, y and f(5) = 2, f'(0) = 3 then f'(5) =

    A
    `0`
    B
    `1`
    C
    `6`
    D
    `2`
  • f(x - y), f(x) f(y), f(x + y) are in A.P. AA x, y and f(0) != 0 then

    A
    `f(2) = f(-2)`
    B
    `f(-3) + f(3) = 0`
    C
    `f'(4) + f'(-4) = 0`
    D
    `f'(3) = f'(-3)`
  • If f(x) =1/2[3^(x) + 3^(-x)] , g(x) =1/2[3^(x)-3^(-x)] , then f(x) g(y) +f(y)g(x) =

    A
    f(x+y)
    B
    g(x+y)
    C
    2f(x)
    D
    2g(x)
  • Similar Questions

    Explore conceptually related problems

    If f ((x+ y)/( 3)) = (2 + f (x) + f (y))/(3) AA x, y in R and f'(2) =2 then determine y = f (x).

    If f (x) is a function such that (x - y) f (x + y)- (x + y) f (x - y) 4xy (x ^(2) - y ^(2)) AA x, y in R and f (1) =1 then find f (x).

    If f ((x + 2y)/(3)) = (f (x) + 2f (y))/( 3) AA x, y in R and f '(0) = 1, f (0) = 2, then find f (x).

    If satisfies the relation f(x+y)+f(x-y)=2 " " f(x).f(y) AA x , y in R and f(0) != 0 , then f(10)-f(-10)=

    If f (x+ y ) = f (x) . F(y) for all real x,y and f(0 ) ne 0 then the funtions g (x) = ( f(x) )/( 1+ { f(x) }^(2)) is