Home
Class 11
MATHS
If veca, vecb, vecc are three coplanar v...

If `veca, vecb, vecc` are three coplanar vectors, `barp, barq, barr` are non-zero vectors then `|(barp*bara,barp*barb,barp*barc),(barq*bara,barq*barb,barq*barc),(barr*bara,barr*barb,barr*barc)|=`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise CROSS PRODUCT OF TWO VECTORS|17 Videos
  • 3D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|40 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos

Similar Questions

Explore conceptually related problems

If bara,barb,barc are unit coplanar vectors, then find [ 2bara-barb 2barb-barc 2barc -bara] .

If bara,barb,barc are 3 vectors then prove that (bara xx barb)xxbarc= (barc.bara)barb - (barc.barb)bara .

Knowledge Check

  • If bara, barb, barc are non-coplanar vectors, then |(bara*bara,barb*barb,bara*barc),(barb*bara,barb*barb,barb*barc),(barc*bara,barc*barb,barc*barc)|=

    A
    `[(bara,barb,barc)]`
    B
    `[(bara,barb,barc)]^(2)`
    C
    1
    D
    0
  • If bara,barb,barc " are three non zero vectors, and " bara.barb = bara.barc rArr

    A
    `barb=barc`
    B
    `bara " is perpendicular to " barb+barc`
    C
    `barc " is perpendicular to both " barb and barc`
    D
    `barb=barc " or " bara " is perpendicular to " (barb-barc)`
  • (bara+2barb-barc).(bara-barb)xx(bara-barb-barc)=

    A
    `-[bara barb barc]`
    B
    `2[bara barb barc]`
    C
    `3[bara barb barc]`
    D
    `bar0`
  • Similar Questions

    Explore conceptually related problems

    [barb barc bard]bara-[bara barc bard]barb+[bara barb bard]barc-[bara barb barc]bard=

    If bara, barb, barc are any three vectors such that baraxxbarb=barc, barbxxbarc=bara,barcxxbara=barb then [barabarbbarc] =

    If bara, barb, barc are three non-coplanar vectors, barp=(barbxxbarc)/([bara barb barc]),barq=(barcxxbara)/([bara barb barc]),barr=(baraxxbarb)/([bara barb barc]) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr =

    [bara barb barc]+[bara barc barb] =

    barc.(barb+barc)xx(bara+barb+barc)=