Home
Class 11
MATHS
If x=Sin 1, y = Sin 2, z= Sin 3 then...

If `x=Sin 1, y = Sin 2, z= Sin 3` then

A

`x lt y lt z`

B

`x gt y gt z`

C

`y lt z lt x`

D

`z lt x lt y`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|77 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise EXERCISE - I|35 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    AAKASH SERIES|Exercise Practice Exercise|49 Videos

Similar Questions

Explore conceptually related problems

If x= sin 1, y= sin 1^(@) then x gt y .

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi , then prove that x^(4) + y^(4) + z^(4) + 4x^(2) y^(2) z^(2) = 2 (x^(2) y^(2) + y^(2) z^(2) + z^(2) x^(2) )

Knowledge Check

  • If x sin a + y sin 2a + z sin 3a = sin 4 a, x sin b + y sin 2b + z sin 3b = sin 4b, x sin c + y sin 2c + z sin 3c = sin 4c . Then the roots of the equation t^(3) - ((z)/(2))t^(2) - ((y+z)/(4)) t+((z-x)/(8))=0, a, b, c ne n pi , are

    A
    sin a, sin b, sin c
    B
    cos a, cos b, cos c
    C
    sin 2a, sin 2b, sin 2c
    D
    cos 2a, cos 2b, cos 2c
  • If x -y = Sin ^(-1) x - Sin ^(-1) y then (dy)/(dx) =

    A
    ` (sqrty(4x sqrtx-sqrty))/(sqrtx (2 sqrty + sqrtx))`
    B
    `(sqrty (1- 2 sqrtxy-y))/(sqrtx (1+ 2 sqrtxy +x))`
    C
    `(2x +3)/(2y + 5)`
    D
    `( sqrt( 1- y ^(2))-sqrt((1- x ^(2))( 1- y ^(2))))/(sqrt( 1- x ^(2)) - sqrt((1-x ^(2)) ( 1- y^(2))))`
  • If Sin h^(-1) x + Sin h ^(-1) y =1 then

    A
    `(dy)/(dx) = sqrt(|(1+y ^(2))/(1 + x ^(2))|)`
    B
    `(dy)/(dx) + sqrt(|(1+y ^(2))/(1 + x ^(2))|)`
    C
    `sqrt(1 + y ^(2))y _(1) + sqrt(1+ x ^(2))=0`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If Sin^(-1)x + Sin^(-1)y + Sin^(-1)z = pi , then prove that x^(4) + y^(4) + z^(4) + 4x^(2)y^(2)z^(2) = 2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) .

    if sin^(-1) (x) + sin^(-1) y+ sin^(-1) z = pi , then prove that x sqrt( 1-x^2) + y sqrt(1- y^2) + z sqrt( 1-z^2) = 2xyz .

    If x sin alpha + y sin2a + z sin 3a = sin4a x sin b + x sin 3b = sin 4b, x sin c + y sin 2c + z sin 3c = sin 4c . Then the roots of the equation t^(3)-(z/2)t^(2)-((y+z)/(4))t+((z-x)/8)= 0 , a b , c ne n pi , are

    If x= sin 1 , y=sin1^(@) then

    cos x + cos y + cos z = 0 and sin x + sin y + sin z, then cos ^(2) (( x-y)/( 2)) =