Home
Class 11
MATHS
If 0 le x le 2pi and 2^(cosec^(2)x)sqrt(...

If `0 le x le 2pi` and `2^(cosec^(2)x)sqrt(1/2y^(2)-y+1)lesqrt(2)` then the number of ordered pairs of (x,y) is

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)|3 Videos
  • TRANSFORMATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I LEVEL-I Straight Objective Type Questions)|41 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|77 Videos

Similar Questions

Explore conceptually related problems

If x,y in (0,2pi) , then the number of distinct ordered pairs (x,y) satisfying the equation 9cos^(2)+sec^(2)y-6cosx-4secy+5=0 is

If x, y in [0, 2 pi] , then the total number of ordered pairs (x, y) satisfying the equation sinx cos y = 1 is

f(x)={:{(x+1,x le 1),(2x+1,1 lt x le 2):} and g(x)={:{(x^(2)",",-1le x lt2),(x+2",",2 le x le 3):} The domain of the function f(g(x)) is

If Sec^(-1)sqrt(1-x^(2))+Cosec^(-1)(sqrt(1+y^(2)))/y+"Cot"^(-1)1/z=3pi then

Given 0 le x le 1/2 then the value of tan[sin^(-1){x/sqrt(2)+sqrt(1-x^(2))/sqrt(2)}-sin^(-1)x] is

If tan^(2)(pi(x+y))+cot^(2)(pi)x+y=1+sqrt((2x)/(1+x^(2))) where x,y are real then the least positive value of y is

Number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx) where -pi le x le pi