Home
Class 11
MATHS
Let a=cos^(-1)cos20,b=cos^(-1)cos30,c=si...

Let `a=cos^(-1)cos20,b=cos^(-1)cos30,c=sin^(-1)sin(a+b)` then
The largest integer x for which `sin^(-1)(sinx)ge|x-(a+b+c)|` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I INTEGER TYPE QUESTIONS)|2 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II) (LEVEL - I STRAIGHT OBJECTIVE TYPE QUESTIONS)|20 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I MATRIX MATCHING TYPE QUESTIONS)|1 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

A= sin 1 , B= cos 1 ,C=tan 1 then the ascending order is

A= sin 1, B = cos 1, C = tan 1 then the ascending order is

Knowledge Check

  • Let a=cos^(-1)cos20, b=cos^(-1)cos30, c=sin^(-1)sin(a+b) then If 5sec^(-1)x+10sin^(-1)y=10(a+b+c) then the value of tan^(-1)x+cos^(-1)(y-1) is

    A
    `pi/2`
    B
    `pi/4`
    C
    `pi`
    D
    0
  • If sin^(-1)(cos^(-1)x)lt1 and cos^(-1)(cos^(-1)x)lt1 then x in

    A
    `(Sin1, Sin (sin1))`
    B
    `(cos(cos1),cos(sin1))`
    C
    `(cos(sin1),cos(cos1))`
    D
    `phi` (empty set)
  • The values of Sin^(-1)(cos{Cos^(-1)(cosx)+Sin^(-1)(sinx)})" where "x in (pi/2, pi) is

    A
    `pi/2`
    B
    `-pi`
    C
    `pi`
    D
    `-pi/2`
  • Similar Questions

    Explore conceptually related problems

    If sin(sin x + cos x) = cos (cos x - sin x) then the largest possible value of sin x is

    int (sin^(-1) x -cos^(-1)x)/(sin^(-1) x + cos^(-1)x) dx =

    If Cos^(-1)x=Tan^(-1)x , then sin(Cos^(-1)x)=

    If Sin^(-1)(cos^(-1)x) lt 1 and cos^(-1)(cos^(-1)x) lt 1" then "x in

    cos^(-1)sqrt((a-x)/(a-b))=sin^(-1)sqrt((x-b)/(a-b))(a ne b) is possible if