Home
Class 11
MATHS
The number of values of x for which sin^...

The number of values of x for which `sin^(-1)(x^(2)-x^(4)/3+x^(6)/9…..)+cos^(-1)(x^(4)-x^(8)/3+x^(12)/9….)=pi/2," where "0 le abs(x) lt sqrt(3)`, is

Text Solution

Verified by Experts

The correct Answer is:
3
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II) (LEVEL - I STRAIGHT OBJECTIVE TYPE QUESTIONS)|20 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II) (LEVEL - II MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|2 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I LINKED COMPREHENSION TYPE QUESTION)|2 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

The number of values of x for which sin^(-1)(x^(2)-(x^(4))/3+(x^(6))/9………)+cos^(-1)(x^(4)-(x^(8))/3+(x^(12))/9………)=(pi)/2 , where 0le|x|ltsqrt(3) , is

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

Knowledge Check

  • If Sin^(-1)(x-x^(2)/2+x^(3)/4)+Cos^(-1)(x^(2)-x^(4)/2+x^(6)/4…..)=pi/2" for "0 lt abs(x) lt sqrt(2) then x =

    A
    `1//2`
    B
    1
    C
    `-1//2`
    D
    -1
  • The values of x for which (x-1)/(3x+4) lt (x-3)/(3x-2)

    A
    `(-oo, (5)/(4))`
    B
    `(-(4)/(3), (2)/(3))`
    C
    `((3)/(4), oo)`
    D
    `(-oo, -(5)/(4)) uu (3//4, oo)`
  • If sin^(-1)(x-(x^(2))/2+(x^(3))/4-……oo) +cos^(-1)(x^(2)-(x^(4))/2+(x^(6))/4-……..oo)=(pi)/2 and 0ltxltsqrt(2) then x=

    A
    `1/2`
    B
    `1`
    C
    `-1/2`
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

    If sin^(-1)(x-x^2/2+x^3/4-….oo)+cos^(-1)(x^2-x^4/2+x^6/4-….oo)=pi/2 and 0 lt x lt sqrt2 then x =

    The values of x for which (x-1)/( 3x +4) lt (x-3)/( 3x-2) holds , lie in

    If sin^(-1)(x-(x^2)/(2)+(x^3)/(4)-...infty)+cos^(-1)(x^2-(x^4)/(2)+(x^6)/(4)-...infty)=(pi)/(2) and 0ltxltsqrt(2) , then x is equal to

    The number of roots o x in [0,2pi] for which |sqrt(2sin^(4)x+18cos^(2)x)-sqrt(2cos^(4)x+18sin^(2)x)|=1 is