Home
Class 12
MATHS
If (alpha+beta) and (alpha- sqrt(beta)) ...

If `(alpha+beta) and (alpha- sqrt(beta))` ar the roots of the equation `x^(2)+px+q=0` where `alpha, beta, p and q` are real, then the roots of the equation `(p^(2)-4q)(p^(2)x^(2)+4px)-16q=0` are

A

`((1)/(alpha)+(1)/(sqrt(beta))) and ((1)/(alpha)-(1)/(sqrt(beta)))`

B

`((1)/(sqrt(alpha))+(1)/(beta)) and ((1)/(sqrt(alpha))-(1)/(beta))`

C

`((1)/(sqrt(alpha))+(1)/(sqrt(beta))) and ((1)/(sqrt(alpha))-(1)/(sqrt(beta)))`

D

`(sqrt(alpha)+ sqrt(b) and (sqrt(alpha)- sqrt(beta))`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2011

    WB JEE PREVIOUS YEAR PAPER|Exercise MULTIPLE CHOICE QUESTIONS|80 Videos
  • QUESTION PAPER 2013

    WB JEE PREVIOUS YEAR PAPER|Exercise MULTIPLE CHOICE QUESTIONS|80 Videos

Similar Questions

Explore conceptually related problems

IF alphapmsqrtbeta be the roots of the equation x^2+px+q=0 , prove that 1/alphapm1/sqrtbeta will be the roots of the equation (p^2-4q)(p^2x^2+4px)-16q=0 .

If p. q are odd integers. Then the roots of the equation 2px^(2)+(2p+q)x+q=0 are

Knowledge Check

  • If (alpha+sqrtbeta) and (alpha-sqrtbeta) are the roots of the equation x^2+px+q=0 where alpha,beta ,p and q are real, then the roots of the equation (p^2-4q)(p^2x^2+4px)-16q =0 are

    A
    `(1/alpha+1/sqrtbeta) and (1/alpha-1/sqrtbeta)`
    B
    `(1/sqrtalpha+1/beta) and (1/sqrtalpha-1/beta)`
    C
    `(1/sqrtalpha+1/sqrtbeta) and (1/sqrtalpha-1/sqrtbeta)`
    D
    `(sqrtalpha+sqrtbeta) and (sqrtalpha-sqrtbeta)`
  • If , p , q are the roots of the equation x^(2)+px+q=0 , then

    A
    p=1,q=-2
    B
    p= 0 ,q = 1
    C
    `p=-2,q=0`
    D
    `p=-2,q=1`
  • If p and q are the roots of the equation x^2+px+q =0, then

    A
    p=1,q=-2
    B
    p=0,q=1
    C
    p=-2,q=0
    D
    p=-2,q=1
  • Similar Questions

    Explore conceptually related problems

    IF the roots of the equation 3x^2+8x+2=0 are alpha,beta then (1/alpha+1/beta) =

    If the roots of the equation (x - p) (x - q) -r = 0 are alpha , beta then the roots of the equation (y - beta) (y - alpha) + r = 0 are

    If the roots of the equation qx^2+2px+2q=0 are real and unequal, prove that the roots of the equation (p+q)x^2+2qx+(p-q)=0 are imaginary.

    If the roots of the equation x^2+2px+q=0 are real and unequal then

    If p,q are odd integers, then the roots of the equation 2px^(2)+(2p+q)x+q=0 are