Home
Class 11
MATHS
In triangle ABC, triangle A^(1)B^(1)C^(1...

In triangle ABC, triangle `A^(1)B^(1)C^(1)` are such that `B=B^(1),A+A^(1)=180^(0)` then `b b^(1)+c c^(1)=`

Answer

Step by step text solution for In triangle ABC, triangle A^(1)B^(1)C^(1) are such that B=B^(1),A+A^(1)=180^(0) then b b^(1)+c c^(1)= by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - 1|98 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - II|148 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - 9.2 ( LONG ANSWER QUESTIONS)|20 Videos
  • PLANES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|30 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos

Similar Questions

Explore conceptually related problems

Find the centroid of triangle ABC whose vertices are A(-5,6) B(4,1)C(1,2).

If G is the centroid of DeltaABC, G^(1) is the centroid of Delta A^(1)B^(1)C^(1)" then "bar(A""A^(1))+bar(B""B^(1))+bar(C""C^(1))=

Knowledge Check

  • If Delta ABC, A' B' C' are such that B=B', A+A'=180^@ , then aa'=

    A
    `aa'+bb'`
    B
    bb'+cc'
    C
    aa'+cc'
    D
    None
  • In a triangle ABC, if the angle A=60^(@) , then 1/(a+b)+1/(a+c)=

    A
    `(3(1+b-c))/(a+b+c)`
    B
    `2/(a+b+c)`
    C
    `3/(a+b+c)`
    D
    `(a+b+c)/(3a^(2))`
  • In Delta ABC , 2ac sin ""( 1)/(2) (A-B+C)=

    A
    ` a^(2) + b^(2) - c^(2) `
    B
    ` c^(2) + a^(2) - b^(2) `
    C
    ` b^(2) -c^(2) +b^(2) `
    D
    ` c^(2) -a^(2) +b^(2) `
  • Similar Questions

    Explore conceptually related problems

    In a triangle ABC if "cot"(A)/(2)"cot"(B)/(2)=c, "cot"(C)/(2)=a and "cot"(C)/(2),"cot"(A)/(2)=b then (1)/(x-a)+(1)/(x-b)+(1)/(s-c)=

    In Delta ABC , if angle A = 60 ^(@) then ( 1+ (a)/(c ) +(b) /(c ) ) (1+ ( c )/( b) - (a)/(b)) =

    In a triangle ABC,(s-a)/Delta=1/8,(s-b)/Delta=1/12,(s-c)/Delta=1/24 then b=

    If the vertices of a triangle A, B, C are A(0, 0), B(2, 1), C(9, -2) then cosB =

    Let a triangle ABC be inscribed in a circle of radius 2 units. If the 3 bisectors of the angles A, B and C are extended to cut the circle at A_(1), B_(1) and C_(1) respectively, then the value of [(A A_(1) "cos"(A)/(2)+ B B_(1) "cos"(B)/(2)+C C_(1) "cos"(C)/(2))/(sin a + sin B + sin C)]^(2)=