Home
Class 11
MATHS
If A is not an integral multiple of (pi)...

If A is not an integral multiple of `(pi)`, prove that `cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A)` Hence deduce that `cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)`

Promotional Banner

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE |15 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-1 |35 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE 3.1 ( SHORT ANSWER QUESTION )|18 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos

Similar Questions

Explore conceptually related problems

cos. (pi)/(13) + cos. (5pi)/(13) + cos. (8pi)/(13) + cos. (12pi)/(13)=

cos""(2pi)/(15) cos ""(4pi)/(15)""cos(8pi)/(15) cos""(16pi)/(15)=

Prove that cos. (2pi)/(7). Cos. (4pi)/(7). Cos. (8pi)/(7)=(1)/(8)

cos. (3pi)/(19) + cos . (7pi)/(19) + cos. (12pi)/(19) + cos. (16pi)/(19) =

"Cos"(2pi)/15."Cos"(4pi)/15."Cos"(8pi)/15."Cos"(14pi)/15=

Show that cos Acos ((pi)/(3)+A)cos ((pi)/(3)-A)=(1)/(4) cos 3A Hence deduce that cos.(pi)/(9) cos. (2pi)/(9)cos. (4pi)/(9)=(1)/(8)

"cos" (2pi)/(7)+"cos" (4pi)/(7)+"cos"(6pi)/(7)=

16 sin x cosx cos 2x cos 4x cos 8x in