Home
Class 11
MATHS
(1+sintheta-costheta)/(1+sintheta+costhe...

`(1+sintheta-costheta)/(1+sintheta+costheta)=`

A

`"sin"theta/2`

B

`costheta/2`

C

`tantheta/2`

D

`cottheta/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-II|52 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE |15 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos

Similar Questions

Explore conceptually related problems

If 3cottheta=5 , then (5sintheta-3costheta)/(5sintheta+3costheta) = ………………

((1+sintheta+icostheta)/(1+sintheta-icostheta))^(n)

Knowledge Check

  • If (sintheta-costheta+1)/(sintheta+costheta-1)=(x)/(tantheta-sectheta+1) then x =

    A
    0
    B
    2
    C
    `tan theta - sec theta + 1`
    D
    `tan theta + sec theta - 1`
  • If (sin^3theta-cos^3theta)/(sintheta-costheta)-(costheta)/(sqrt((1+cot^2theta)))-2tanthetacottheta=-1, thetain[0,2pi] then

    A
    `thetain(0,pi//2)-{pi//4}`
    B
    `thetain(pi/2,pi)-{3pi//4}`
    C
    `thetain(pi,(3pi)/2)-{5pi//4}`
    D
    `thetain(0,pi)-{pi//4,pi//2}`
  • (sintheta+sin2theta)/(1+costheta+cos2theta)

    A
    `sintheta`
    B
    `costheta`
    C
    `tantheta`
    D
    `cottheta`
  • Similar Questions

    Explore conceptually related problems

    If 5tantheta=4 , then the value of (5sintheta-3costheta)/(5sintheta+3costheta) is

    If tantheta=1 then value of (5sintheta+4costheta)/(5sintheta-4costheta) is

    (1+sintheta+icostheta)^(n)

    Simplify costheta[(costheta,sin theta),(-sintheta,costheta)]+sin[(sintheta,-costheta),(costheta,sintheta)]

    (3costheta+cos3theta)/(3sintheta-sin3theta)=