Home
Class 11
PHYSICS
10,000 small balls, each weighing 1 gm ,...

10,000 small balls, each weighing 1 gm , strike one square cm of area per second with a velocity 100 m/s in a normal direction and rebound with the same velocity. The value of pressure on the surface will be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the pressure exerted on a surface by the small balls striking it and rebounding back. Here's a step-by-step solution: ### Step 1: Understand the Given Data - Number of balls (N) = 10,000 - Mass of each ball (m) = 1 gram = \(1 \times 10^{-3}\) kg - Velocity of the balls (v) = 100 m/s - Area (A) = 1 cm² = \(1 \times 10^{-4}\) m² ### Step 2: Calculate the Total Momentum Change When the balls strike the surface and rebound, they undergo a change in momentum. The change in momentum (Δp) for one ball is given by: \[ \Delta p = mv - (-mv) = mv + mv = 2mv \] For 10,000 balls, the total change in momentum (ΔP) is: \[ \Delta P = N \times \Delta p = N \times 2mv = 10,000 \times 2 \times (1 \times 10^{-3}) \times 100 \] ### Step 3: Calculate the Total Change in Momentum Substituting the values: \[ \Delta P = 10,000 \times 2 \times (1 \times 10^{-3}) \times 100 = 10,000 \times 2 \times 0.001 \times 100 \] \[ \Delta P = 10,000 \times 0.2 = 2000 \text{ kg m/s} \] ### Step 4: Calculate the Force The force (F) exerted by the balls on the surface is equal to the rate of change of momentum. Since the balls strike the surface once every second, the force can be calculated as: \[ F = \frac{\Delta P}{\Delta t} = \frac{2000 \text{ kg m/s}}{1 \text{ s}} = 2000 \text{ N} \] ### Step 5: Calculate the Pressure Pressure (P) is defined as force per unit area: \[ P = \frac{F}{A} \] Substituting the values: \[ P = \frac{2000 \text{ N}}{1 \times 10^{-4} \text{ m}^2} = 2000 \times 10^{4} \text{ Pa} = 2 \times 10^{7} \text{ Pa} \] ### Final Answer The pressure exerted on the surface by the balls is: \[ P = 2 \times 10^{7} \text{ Pa} \] ---

To solve the problem, we need to calculate the pressure exerted on a surface by the small balls striking it and rebounding back. Here's a step-by-step solution: ### Step 1: Understand the Given Data - Number of balls (N) = 10,000 - Mass of each ball (m) = 1 gram = \(1 \times 10^{-3}\) kg - Velocity of the balls (v) = 100 m/s - Area (A) = 1 cm² = \(1 \times 10^{-4}\) m² ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CENTRE OF MASS

    DC PANDEY ENGLISH|Exercise Assertion and reason|21 Videos
  • CENTRE OF MASS

    DC PANDEY ENGLISH|Exercise Match the coloumns|9 Videos
  • CENTRE OF MASS

    DC PANDEY ENGLISH|Exercise Check points|50 Videos
  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Medical entrance s gallery|38 Videos
  • CENTRE OF MASS, IMPULSE AND MOMENTUM

    DC PANDEY ENGLISH|Exercise Comprehension type questions|15 Videos

Similar Questions

Explore conceptually related problems

2000 small balls, each weighing 1 g, strike one square cm of area per second with a velocity of 100 m/s normal to the surface and rebounds with the same velocity. The pressure on the surface is

A spherical ball of mass 10^(-6) kg hits a wall 1000 times per second normally with a velocity of 1000 m/s and rebounds with same velocity along the initial direction. The force experienced by the wall is

two waves of wavelength 100 cm and 102 cm produce 12 beats per second having same velocity. the velocity of each wave is

A surface is hit elastically and normally by n bals per unit time, all the balls having the same mass m, and moving with the same velocity v. then the force acting on surface is

A small ball of mass 1kg strikes a wedge of mass 4kg horizontally with a velocity of 10m//s . Friction is absent everywhere and collision is elastic. Select the incorrect answer:

A small sphere of mass m =1 kg is moving with a velocity (4hati-hatj) m//s . it hits a fixed smooth wall and rebounds with velocity (hati + 3hatj) m//s . The coefficient of restitution between the sphere and the wall is n//16 . Find the value of n .

A horizontal jet of water coming out of a pipe of area of cross - section 20 cm^(2) hits a vertical wall with a velocity of 10 ms^(-1) and rebounds with the same speed. The force exerted by water on the wall is,

A ball of mass 600 gm strikes a wall with a velocity of 5 ms^(-1) at an angle 30^@ with the wall and rebounds with the same speed at the same angle with the wall. The change in momentum of the ball is, (in kg ms^(-1) )

A ball of mass 2 kg is moving with velocity 20 m/sec strikes with the surface and rebounds with same speed, if time of contact is 0.1 sec then calculate average force on the ball.

A ball weighing 10g hits a hard surface vertically with a speed of 5m//s and rebounds with the same speed The ball remains in contact with the surface speed The ball remains in contact with the surface for 0.01s The average force exerted by the surface on the ball is .