Home
Class 11
PHYSICS
Match the following columns, {:("Column1...

Match the following columns, `{:("Column1","Coloumn2"),("a Specific heat","p [MLT^(-3)K^(-1)]"),("b Coefficient of thermal conductivity","q [MT^(-3)K^(-4)]"),("c Boltzmann constant","r [L^(2)T^(-2)K^(-1)]"),("d Stefan's constat","s [ML^(2)T^(-2)K^(-1)]"):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the columns based on the physical quantities and their dimensions, we will analyze each item in Column 1 and find its corresponding dimension from Column 2. ### Step-by-Step Solution: 1. **Specific Heat (a)**: - Specific heat (C) is defined as the amount of heat (Q) required to raise the temperature of a unit mass (m) by one degree (T). - The formula is: \[ C = \frac{Q}{m \Delta T} \] - The dimension of heat (Q) is \( [M L^2 T^{-2}] \). - The dimension of mass (m) is \( [M] \). - The dimension of temperature (T) is \( [K] \). - Therefore, the dimension of specific heat becomes: \[ [C] = \frac{[M L^2 T^{-2}]}{[M][K]} = [M^0 L^2 T^{-2} K^{-1}] \] - This matches with option **(p)**. 2. **Coefficient of Thermal Conductivity (b)**: - The coefficient of thermal conductivity (K) is defined as: \[ K = \frac{Q \cdot L}{A \cdot \Delta T} \] - Here, \( A \) is the area, and \( L \) is the length. - The dimension of area (A) is \( [L^2] \). - Therefore, substituting the dimensions: \[ [K] = \frac{[M L^2 T^{-2}] \cdot [L]}{[L^2] \cdot [K]} = \frac{[M L^3 T^{-2}]}{[L^2][K]} = [M L T^{-3} K^{-1}] \] - This matches with option **(q)**. 3. **Boltzmann Constant (c)**: - The Boltzmann constant (k) is defined as the energy per temperature: \[ k_B = \frac{E}{T} \] - The dimension of energy (E) is \( [M L^2 T^{-2}] \). - Therefore, the dimension of the Boltzmann constant becomes: \[ [k_B] = \frac{[M L^2 T^{-2}]}{[K]} = [M L^2 T^{-2} K^{-1}] \] - This matches with option **(s)**. 4. **Stefan's Constant (d)**: - Stefan's constant (σ) is defined in relation to the energy emitted per unit area per unit time per unit temperature raised to the fourth power: \[ \sigma = \frac{E}{A \cdot t \cdot T^4} \] - Therefore, substituting the dimensions: \[ [\sigma] = \frac{[M L^2 T^{-2}]}{[L^2] \cdot [T] \cdot [K^4]} = \frac{[M L^2 T^{-2}]}{[L^2 T K^4]} = [M L^0 T^{-3} K^{-4}] \] - This matches with option **(r)**. ### Final Matching: - a → p - b → q - c → s - d → r
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Medical entrance s gallery|38 Videos
  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Assertion and reason|17 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos
  • CENTRE OF MASS

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|27 Videos

Similar Questions

Explore conceptually related problems

Match the following columns, {:("Column1","Column2"),("a Thermal resitance","p [MT^(-3)K^(-4)]"),("b Stefan's constant","q [M^(-1)L^(-2)T^(3)K]"),("c Wien's constant","r [ML^(2)T^(-3)]"),("d Heat current","s [LK]"):}

Match List I with List II and select the correct answer using the codes given below the lists: {:(,"List I",,,"List II"),(P.,"Boltzmann constant",,1.,[ML^(2)T^(-1)]),(Q.,"Coefficient of viscosity",,2.,[ML^(-1)T^(-1)]),(R.,"Planck constant",,3.,[MLT^(-3)K^(-1)]),(S.,"Thermal conductivity",,4.,[ML^(2)T^(-2)K^(-1)]):}

Knowledge Check

  • {:("Column A", "k < 0","Column B"),(k^2(k + 1/2)^(2)," ",0):}

    A
    If column A is larger
    B
    If column B is larger
    C
    If the columns are equal
    D
    If there is not enough information to decide
  • Similar Questions

    Explore conceptually related problems

    Obtain the dimensions of (1) coefficient of thermal conductivity (2) Gas constant (3) Boltzmann constant (4) Planck's constant.

    Match the following two columns. {:(,"Column I",,"Column II"),("A.","Electrical resistance",1.,["ML"^(3)"T"^(-3)"A"^(-2)]),("B.","Electrical potential",2.,["ML"^(2)"T"^(-3)"A"^(-2)]),("C.","Specific resistance",3.,["ML"^(2)"T"^(-3)"A"^(-1)]),("D.","Specific conductance",4.,"None"):}

    Match the following columns. {:(,"Column I",,"Column II"),(A.,"Tesla",p,[ML^(2)A^(-2)T^(-2)]),(B.,"Weber",q,[MLA^(-2)T^(-1)]),(C.,"Weber m"^(-2),r.,[MA^(-1)T^(-2)]),(D.,"Henry",s.,"None"):}

    {:(,"Column I",,"Column II"),(("A"),"Electrical resistance",(p),["M"^(-1)"L"^(-2)"T"^(4)"A"^(2)]),(("B"),"Capacitance",(q),["ML"^(2)"T"^(-2)"A"^(-2)]),(("C"),"Magnetic field",(r),["ML"^(2)"T"^(-3)"A"^(-2)]),(("D"),"Inductance",(s),["MT"^(-2)"A"^(-1)]):}

    Match the following. |{:(,"Table-1",,"Table-2"),((A),"Coefficient of viscosity",(P),[M^(2)L^(-1)T^(-2)]),((B),"Surface tension",(Q),[ML^(0)T^(-2)]),((C),"Modulus of elasticity",(R),[ML^(-1) T^(-2)]),((D),"Energy per unit volume",(S),"None"),(,"of a fiuid",,):}|

    {:(,"Column I",,"Column II"),(("A"),"Work",(p),["A"^(1//2)"T"^(-1)]),(("B"),"Moment of inertia",(q),["FA"^(1//2)]),(("C"),"Velocity",(r),["FA"^(1//2)"T"^(2)]):}

    Name of units of some physical quantities are given in List - 1 and their dimensional formulae are given in List - 2 , Match correct pair in lists. {:("List - 1","List - 2"),((a) pascal ,(e) L^2T^(-2)K^(-1)),((b) NmK^(-1), (f) MLT^(-3)K^(-1)),((c) J Kg^(-1)K^(-1), (g) ML^(-1)T^(-2)),((d) Wm^(-1)K^(-1), (h) ML^(2)T^(-2)K^(-1)):}