Home
Class 12
MATHS
Prove that the relation R in the set of ...

Prove that the relation R in the set of integers z defined by `R = { ( x , y) : x-y` is an integer `}` is an equivalence relation.

Text Solution

Verified by Experts

The correct Answer is:
`rArr ( x, z) in R therefore` R is a transitive relation
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - D (Answer any six questions)|12 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - E (Answer any one question).|4 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART B (Answer any Ten Questions)|14 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY -2014

    SUNSTAR PUBLICATION|Exercise PART -E|4 Videos

Similar Questions

Explore conceptually related problems

Show that the relation R in the set of all integers, Z defined by R = {(a, b) : 2 "divides" a - b} is an equivalence relation.

Show that the relation R in the set of all integers Z defined by R ={(a,b):2 divides a-b} is an equivalence relation.

Show thaT the relation R in the set of all integers Z defined by R{(a,b) : 2 divides a-b} is an equivalence relation.

Relation R on Z defined as R = {(x ,y): x - y "is an integer"} . Show that R is an equivalence relation.

Show that the relation R in the set of all natural number, N defined by is an R = {(a , b) : |a - b| "is even"} in an equivalence relation.

Solve that the relation R in the set z of intergers given by R={(x,y):2 divides (x-y)} is an equivalence relation.

Show that the relation R in the set A={x in z, 0 le x le 12} given by R={(a,b):|a-b| is a multiple of 4} is an equivalence relation.

Show that the relation R in the set A={x in Z :0lexle12} is given by R={(a,b) : |a-b|" is a multiple of 4"} is an equivalence relation .

Determine w hether each of the following relations are reflexive, symmetric and transitive: (i) Relation R in the set A = {1,2,3,…,13,14} defined as R = {(x,y): 3x -y =0} (ii) Relation R in the set N of natural numbers defined as R = {(x,y): y = x +5 and x lt 4} (iii) Relation R in the set A ={1,2,3,4,5,6}as R = {(x,y):y is divisible by x} (iv) Relation R in the set Z of allintegers defined as R= {(x, y) : x -y is an integer} (v) Relation R in the set A of human beings in a town at a particular time given by (a) R = {(x,y) : x and y work at the same place} (b) R = {(x,y):x and y live in the same locality] (c ) R ={(x,y) :x is exactly 7 cm taller than y} (d) R = {(x,y) :x is wife of y} (e) R = {(x,y):x is father of y}

Show that the relation R in the set A = {x in Z : 0 le x le 12} given by R = {a , b) : |a - b| is a multiple of 4} is an equivalence relation.