Home
Class 12
MATHS
Prove that int(a)^(b)f(x)dx=int(a)^(b)f(...

Prove that `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx` and hence evaluate `int_((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tanx))dx.`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/12`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JULY -2014

    SUNSTAR PUBLICATION|Exercise PART-C|22 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY - 2016

    SUNSTAR PUBLICATION|Exercise PART - E|2 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

    SUNSTAR PUBLICATION|Exercise PART - E (Answer any one question).|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_((pi)/(6))^((pi)/(3))(sinx+cosx)/(sqrt(sin2x))dx.

a) Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx" and evaluate "int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) b) Prove that |{:(1+a^(2)-b^(2), 2ab, -2b), (2ab, 1-a^(2)+b^(2), 2a), (2, -2a, 1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)

Knowledge Check

  • int_(pi/6)^(pi/3) (dx)/(1+sqrttanx) =

    A
    `pi/12`
    B
    `pi/2`
    C
    `pi/6`
    D
    `pi/4`
  • Similar Questions

    Explore conceptually related problems

    Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

    Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

    int_(pi//6)^(pi//3) (dx)/(1 + sqrt(tan x)) =

    Prove that int_(a)^(b)(x)dx = int_(a)^(b)f(a+b-x)dx and int_(pi/4)^(pi/3)(dx)/(1+sqrt(tanx)) .

    Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (c) int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sin x) + sqrt(cos x))dx

    Prove that int_(a)^(b) f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

    Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .