Home
Class 11
MATHS
Lt(xto0)(sqrt(1+x)-1)/(x) is equal to ...

`Lt_(xto0)(sqrt(1+x)-1)/(x)` is equal to
(i) 0
(ii) 1
(iii) `1/2`
(iv) 2

A

0

B

1

C

`1/2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \), we will follow these steps: ### Step 1: Rationalize the Numerator We start by multiplying the numerator and the denominator by the conjugate of the numerator, which is \( \sqrt{1+x} + 1 \). \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \cdot \frac{\sqrt{1+x} + 1}{\sqrt{1+x} + 1} \] ### Step 2: Simplify the Expression This gives us: \[ \lim_{x \to 0} \frac{(\sqrt{1+x})^2 - 1^2}{x(\sqrt{1+x} + 1)} \] Using the identity \( a^2 - b^2 = (a-b)(a+b) \), we can simplify the numerator: \[ \lim_{x \to 0} \frac{1+x - 1}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{x}{x(\sqrt{1+x} + 1)} \] ### Step 3: Cancel the Common Terms Now we can cancel \( x \) in the numerator and denominator: \[ \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} \] ### Step 4: Substitute \( x = 0 \) Now we can substitute \( x = 0 \) into the expression: \[ \frac{1}{\sqrt{1+0} + 1} = \frac{1}{\sqrt{1} + 1} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \frac{1}{2} \] ### Conclusion The answer is option (iii) \( \frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4 (iv) 0

Lt_(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3 (iv) -2/3

Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

Lt_(x to 0)(a^(x)-1)/(sqrt(1+x)-1) is equal to

Lt_(xto0)(x^(2)cosx)/(1-cosx) is equal to

Lt_(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not exist

Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

Lt_(xto1)(sinpix)/(x-1) is equal to

Lt_(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)/(2) (iv) (2)/(pi)

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. Lt(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 ...

    Text Solution

    |

  2. Lt(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

    Text Solution

    |

  3. Lt(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4...

    Text Solution

    |

  4. If Lt(x to a)(x^(9)-a^(9))/(x-a)=Lt(xto5)(x+4) then all possible value...

    Text Solution

    |

  5. Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt(xto-1) f(x) exist...

    Text Solution

    |

  6. lim{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

    Text Solution

    |

  7. Lt(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

    Text Solution

    |

  8. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  9. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  10. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  11. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  12. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  13. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  14. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  15. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  16. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  17. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  18. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  19. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  20. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |