Home
Class 11
MATHS
Lt(xto0)(sqrt(1+x)-1)/(x) is equal to ...

`Lt_(xto0)(sqrt(1+x)-1)/(x)` is equal to
(i) 0
(ii) 1
(iii) `1/2`
(iv) 2

A

0

B

1

C

`1/2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \), we will follow these steps: ### Step 1: Rationalize the Numerator We start by multiplying the numerator and the denominator by the conjugate of the numerator, which is \( \sqrt{1+x} + 1 \). \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \cdot \frac{\sqrt{1+x} + 1}{\sqrt{1+x} + 1} \] ### Step 2: Simplify the Expression This gives us: \[ \lim_{x \to 0} \frac{(\sqrt{1+x})^2 - 1^2}{x(\sqrt{1+x} + 1)} \] Using the identity \( a^2 - b^2 = (a-b)(a+b) \), we can simplify the numerator: \[ \lim_{x \to 0} \frac{1+x - 1}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{x}{x(\sqrt{1+x} + 1)} \] ### Step 3: Cancel the Common Terms Now we can cancel \( x \) in the numerator and denominator: \[ \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} \] ### Step 4: Substitute \( x = 0 \) Now we can substitute \( x = 0 \) into the expression: \[ \frac{1}{\sqrt{1+0} + 1} = \frac{1}{\sqrt{1} + 1} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \frac{1}{2} \] ### Conclusion The answer is option (iii) \( \frac{1}{2} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

Lt_(x to 0)(a^(x)-1)/(sqrt(1+x)-1) is equal to

Knowledge Check

  • Lt_(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4 (iv) 0

    A
    4
    B
    1
    C
    `1/4`
    D
    0
  • Lt_(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3 (iv) -2/3

    A
    `1/3`
    B
    `-1/3`
    C
    `2/3`
    D
    `-2/3`
  • Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

    A
    3
    B
    `1/3`
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Lt_(xto0)(x^(2)cosx)/(1-cosx) is equal to

    Lt_(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not exist

    Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these

    Lt_(xto1)(sinpix)/(x-1) is equal to

    Lt_(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)/(2) (iv) (2)/(pi)