Home
Class 12
MATHS
If [ 2 vec (a) - 3 vec(b) vec( c ) v...

If `[ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] `, then `2 lambda + 3 mu=`

A

13

B

`-5`

C

7

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving vectors and scalar triple products. The equation is: \[ [2 \vec{a} - 3 \vec{b} \quad \vec{c} \quad \vec{d}] = \lambda [\vec{a} \quad \vec{c} \quad \vec{d}] + \mu [\vec{b} \quad \vec{c} \quad \vec{d}] \] ### Step-by-step Solution: 1. **Understanding Scalar Triple Product**: The scalar triple product of vectors \(\vec{a}, \vec{b}, \vec{c}\) can be expressed as: \[ [\vec{a} \quad \vec{b} \quad \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] This means that the left-hand side and the right-hand side of the equation represent scalar triple products. 2. **Expanding the Left Side**: We can rewrite the left-hand side: \[ [2 \vec{a} - 3 \vec{b} \quad \vec{c} \quad \vec{d}] = [2 \vec{a} \quad \vec{c} \quad \vec{d}] - [3 \vec{b} \quad \vec{c} \quad \vec{d}] \] This can be expressed as: \[ 2(\vec{a} \cdot (\vec{c} \times \vec{d})) - 3(\vec{b} \cdot (\vec{c} \times \vec{d})) \] 3. **Expanding the Right Side**: The right-hand side can be expanded as: \[ \lambda [\vec{a} \quad \vec{c} \quad \vec{d}] + \mu [\vec{b} \quad \vec{c} \quad \vec{d}] = \lambda (\vec{a} \cdot (\vec{c} \times \vec{d})) + \mu (\vec{b} \cdot (\vec{c} \times \vec{d})) \] 4. **Setting the Two Sides Equal**: Now, we can set the two sides equal to each other: \[ 2(\vec{a} \cdot (\vec{c} \times \vec{d})) - 3(\vec{b} \cdot (\vec{c} \times \vec{d})) = \lambda (\vec{a} \cdot (\vec{c} \times \vec{d})) + \mu (\vec{b} \cdot (\vec{c} \times \vec{d})) \] 5. **Comparing Coefficients**: From the equation, we can compare coefficients of \(\vec{a} \cdot (\vec{c} \times \vec{d})\) and \(\vec{b} \cdot (\vec{c} \times \vec{d})\): - For \(\vec{a}\): \[ 2 = \lambda \] - For \(\vec{b}\): \[ -3 = \mu \] 6. **Finding \(2\lambda + 3\mu\)**: Now substituting the values of \(\lambda\) and \(\mu\): \[ 2\lambda + 3\mu = 2(2) + 3(-3) = 4 - 9 = -5 \] ### Final Answer: Thus, the value of \(2\lambda + 3\mu\) is \(-5\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If [3 vec a+7 vec b\ vec c\ vec d]=lambda[ vec a\ vec c\ vec d]+mu[ vec b\ vec c\ vec d] , then find the value of lambda+mudot

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vector vec x satisfying vec xxx vec a+( vec xdot vec b) vec c= vec d is given vec x=lambda vec a+ vec axx( vec axx( vec dxx vec c))/(( vec adot vec c)| vec a|^2) , then find the value of lambdadot

The vector equation of the plane passing through the origin and the line of intersection of the planes vec rdot vec a=lambdaa n d vec rdot vec b=mu is (a) vec rdot(lambda vec a-mu vec b)=0 (b) vec rdot(lambda vec b-mu vec a)=0 (c) vec rdot(lambda vec a+mu vec b)=0 (d) vec rdot(lambda vec b+mu vec a)=0

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec adot vec d)[ vec a vec b vec c] b. ( vec adot vec c)[ vec a vec b vec d] c. ( vec adot vec b)[ vec a vec b vec d] d. none of these