Home
Class 12
MATHS
If int ( 1+cos 8x)/( tan 2x-cot 2x)dx = ...

If `int ( 1+cos 8x)/( tan 2x-cot 2x)dx = k cos 8x+ C`, then k equals

A

`(1)/(8)`

B

`-(1)/(8)`

C

`(1)/(18)`

D

`- (1)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 + \cos 8x}{\tan 2x - \cot 2x} \, dx = k \cos 8x + C, \] we will simplify the expression step by step. ### Step 1: Simplify the Denominator First, we simplify the denominator \(\tan 2x - \cot 2x\). \[ \tan 2x = \frac{\sin 2x}{\cos 2x}, \quad \cot 2x = \frac{\cos 2x}{\sin 2x} \] Thus, \[ \tan 2x - \cot 2x = \frac{\sin 2x}{\cos 2x} - \frac{\cos 2x}{\sin 2x} = \frac{\sin^2 2x - \cos^2 2x}{\sin 2x \cos 2x} \] Using the identity \(\sin^2 \theta - \cos^2 \theta = -\cos 2\theta\), we have: \[ \tan 2x - \cot 2x = \frac{-\cos 4x}{\sin 2x \cos 2x} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{1 + \cos 8x}{\tan 2x - \cot 2x} \, dx = \int \frac{(1 + \cos 8x) \sin 2x \cos 2x}{-\cos 4x} \, dx \] ### Step 3: Expand the Numerator Next, we expand the numerator: \[ 1 + \cos 8x = 1 + 2\cos^2 4x - 1 = 2\cos^2 4x \] Thus, we can rewrite the integral as: \[ \int \frac{2 \cos^2 4x \sin 2x \cos 2x}{-\cos 4x} \, dx = -2 \int \cos 4x \sin 2x \cos 2x \, dx \] ### Step 4: Use a Trigonometric Identity Using the identity \(\sin 2x \cos 2x = \frac{1}{2} \sin 4x\), we have: \[ -2 \int \cos 4x \cdot \frac{1}{2} \sin 4x \, dx = -\int \cos 4x \sin 4x \, dx \] ### Step 5: Integrate Now we can integrate: \[ -\int \cos 4x \sin 4x \, dx = -\frac{1}{2} \int \sin 8x \, dx = -\frac{1}{2} \cdot \left(-\frac{1}{8} \cos 8x\right) + C = \frac{1}{16} \cos 8x + C \] ### Step 6: Compare with Given Form Now we compare with the given form \(k \cos 8x + C\): \[ \frac{1}{16} \cos 8x + C = k \cos 8x + C \] From this, we can see that: \[ k = \frac{1}{16} \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{\frac{1}{16}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int(cos8x-1)/(tan2x-cot2x)dx

int(1+cos 2x)/(1-cos 2x)dx

Knowledge Check

  • If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

    A
    `(1)/( 4)`
    B
    `- (1)/(2)`
    C
    `- ( 1)/( 8 )`
    D
    ` - (1)/( 4)`
  • Similar Questions

    Explore conceptually related problems

    If the integal int (5 tan x dx )/(tan x-2) =x +a ln |sin x-2 cos x | +C, then 'a' is equal to :

    int(cos 4x-1)/(cot x-tanx)dx is equal to

    int(tan x + cos x)^(2) dx

    int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

    int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

    int(cos7x-cos8x)/(cos2x-cos3x)dx

    If int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(sin 4x)/(k)-sin x+C , then the value of k is .......... .