Home
Class 12
MATHS
int sin""(x)/(2) cos""(x)/(2) cos x dx ...

`int sin""(x)/(2) cos""(x)/(2) cos x dx ` is equal to

A

`- ( 1)/( 4) cos 2x + C`

B

`- ( 1)/( 8 ) cos 2x + C`

C

`(1)/(8) cos 2x + C`

D

` - (1)/( 8 ) sin 2x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin(x/2)}{\cos(x/2) \cos x} \, dx \), we can follow these steps: ### Step-by-Step Solution 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \frac{\sin(x/2)}{\cos(x/2) \cos x} \, dx \] 2. **Use the Identity for Sine**: We know that: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] Let \( \theta = \frac{x}{2} \). Then, we can express \( \sin(x/2) \cos(x/2) \) as: \[ \sin(x) = 2 \sin(x/2) \cos(x/2) \implies \sin(x/2) \cos(x/2) = \frac{1}{2} \sin(x) \] 3. **Substitute in the Integral**: Substitute \( \sin(x/2) \cos(x/2) \) in the integral: \[ I = \int \frac{\frac{1}{2} \sin(x)}{\cos(x/2) \cos x} \, dx \] This simplifies to: \[ I = \frac{1}{2} \int \frac{\sin(x)}{\cos(x/2) \cos x} \, dx \] 4. **Rewrite the Integral**: We can further simplify: \[ I = \frac{1}{2} \int \sin(x) \sec(x/2) \, dx \] 5. **Use Another Identity**: We can use the identity again to express \( \sin(x) \cos(x) \): \[ \sin(x) \cos(x) = \frac{1}{2} \sin(2x) \] Thus, we can write: \[ I = \frac{1}{4} \int \sin(2x) \, dx \] 6. **Integrate**: Now we integrate: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] Therefore, \[ I = \frac{1}{4} \left(-\frac{1}{2} \cos(2x) + C\right) = -\frac{1}{8} \cos(2x) + C \] 7. **Final Result**: The final result of the integral is: \[ I = -\frac{1}{8} \cos(2x) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

int(1)/(cos x - sin x )dx is equal to

Knowledge Check

  • int( x + sin x )/( 1+ cos x) dx is equal to

    A
    `log | 1+ cos x | +C`
    B
    ` log | x | sin x | + C`
    C
    `x - tan ""(x)/( 2)+c`
    D
    `x tan""(x)/( 2) +C`
  • int ( sin ( log x) + cos ( log x ) dx is equal to

    A
    `sin ( log x ) + C`
    B
    `cos ( log x ) + C`
    C
    `x cos ( log x ) + C`
    D
    `x sin ( log x) + C`
  • int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

    A
    0
    B
    `(pi)/( 6)`
    C
    `(pi)/( 4)`
    D
    `(pi)/( 2)`
  • Similar Questions

    Explore conceptually related problems

    int(sin2x)/(cos2x)dx

    int(cos 2x)/((sin x + cos x)^(2)) dx " is equal to : "

    int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to(A) tanx+cotx+c (B) tanx+cose cx+c (C) -tanx+cotx+c (D) tanx+secx+c

    int(sin2x)/(cos x)*dx

    int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to