Home
Class 12
MATHS
If int(0)^(1) (e^(x))/( 1+x) dx = k, the...

If `int_(0)^(1) (e^(x))/( 1+x) dx = k`, then `int_(0)^(1) (e^(x))/( (1+x)^(2)) dx` is equal to

A

`k-1+(e )/(2)`

B

`k + 1 - ( e )/( 2)`

C

`k - 1 - ( e)/(2)`

D

`k+1+(e )/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \int_{0}^{1} \frac{e^x}{(1+x)^2} \, dx \] given that \[ \int_{0}^{1} \frac{e^x}{1+x} \, dx = k. \] ### Step-by-Step Solution: 1. **Identify the Given Integral**: We know that \[ \int_{0}^{1} \frac{e^x}{1+x} \, dx = k. \] 2. **Use Integration by Parts**: We can use integration by parts on the integral we want to evaluate. We can set: - \( u = \frac{1}{1+x} \) (which is our first preference, an algebraic function) - \( dv = e^x \, dx \) (which is our second preference, an exponential function) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = -\frac{1}{(1+x)^2} \, dx \] - Integrate \( dv \): \[ v = e^x \] 3. **Apply Integration by Parts Formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du. \] Substituting our values: \[ \int \frac{e^x}{1+x} \, dx = \left[ \frac{e^x}{1+x} \right]_{0}^{1} - \int e^x \left(-\frac{1}{(1+x)^2}\right) \, dx. \] 4. **Evaluate the Boundary Term**: Now we evaluate the boundary term: \[ \left[ \frac{e^x}{1+x} \right]_{0}^{1} = \frac{e^1}{1+1} - \frac{e^0}{1+0} = \frac{e}{2} - 1. \] 5. **Substitute Back into the Integral**: Thus, we have: \[ \int_{0}^{1} \frac{e^x}{1+x} \, dx = \left( \frac{e}{2} - 1 \right) + \int_{0}^{1} \frac{e^x}{(1+x)^2} \, dx. \] Setting this equal to \( k \): \[ k = \frac{e}{2} - 1 + \int_{0}^{1} \frac{e^x}{(1+x)^2} \, dx. \] 6. **Rearranging to Solve for the Desired Integral**: Rearranging gives us: \[ \int_{0}^{1} \frac{e^x}{(1+x)^2} \, dx = k - \left( \frac{e}{2} - 1 \right). \] Simplifying further: \[ \int_{0}^{1} \frac{e^x}{(1+x)^2} \, dx = k + 1 - \frac{e}{2}. \] ### Final Answer: Thus, the value of the integral \[ \int_{0}^{1} \frac{e^x}{(1+x)^2} \, dx = k - \frac{e}{2} + 1. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1)x e^(x^(2)) dx

Knowledge Check

  • int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

    A
    `(pi)/( 4)`
    B
    `(pi)/( 2)`
    C
    `tan^(-1) ((e-1)/( e+1))`
    D
    `tan^(-1) ((1-e)/( 1+e))`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(1) x e^(x) dx=1

    int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

    int_(0)^(1)e^(2x)e^(e^(x) dx =)

    int(x e^x)/((1+x)^2)dx is equal to

    int_(-1)^(1) (e^(|x|))/(1+a^(x))dx

    If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

    If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to