Home
Class 12
MATHS
int(a+c)^(b+c) f(x) dx is equal to...

`int_(a+c)^(b+c) f(x) dx` is equal to

A

`int_(a)^(b) f(x-c) dx`

B

`int_(a)^(b) f(x+c) dx`

C

`int_(a)^(b) f(x)dx`

D

`int_(a-c)^(b-c) f(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{a+c}^{b+c} f(x) \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let’s perform the substitution \( t = x - c \). This means that \( x = t + c \). ### Step 2: Change of Limits Now, we need to change the limits of integration according to our substitution: - When \( x = a + c \), then \( t = (a + c) - c = a \). - When \( x = b + c \), then \( t = (b + c) - c = b \). ### Step 3: Change of Differential The differential \( dx \) will change as follows: - Since \( t = x - c \), we have \( dt = dx \). ### Step 4: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ \int_{a+c}^{b+c} f(x) \, dx = \int_{a}^{b} f(t + c) \, dt \] ### Step 5: Final Result Thus, the integral \( \int_{a+c}^{b+c} f(x) \, dx \) is equal to: \[ \int_{a}^{b} f(t + c) \, dt \] ### Conclusion The final answer is: \[ \int_{a+c}^{b+c} f(x) \, dx = \int_{a}^{b} f(t + c) \, dt \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|55 Videos
  • INDETERMINATE FORMS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ICSE|Exercise EXAMPLE |7 Videos

Similar Questions

Explore conceptually related problems

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

Knowledge Check

  • int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

    A
    `(a^(x))/( log ae) + C`
    B
    `( e^(x))/( 1+log a )`
    C
    `( ae )^(x) +C`
    D
    `((ae)^(x))/( log ae) +C`
  • Similar Questions

    Explore conceptually related problems

    Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

    Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

    int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

    int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

    If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

    If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

    If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx