Home
Class 12
MATHS
The value of (hat(k) xx hat(j)). hat(i) ...

The value of `(hat(k) xx hat(j)). hat(i) + hat(j).hat(k)` =

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k}\), we will follow these steps: ### Step 1: Calculate \(\hat{k} \times \hat{j}\) Using the right-hand rule for cross products in vector algebra, we know that: \[ \hat{k} \times \hat{j} = -\hat{i} \] ### Step 2: Substitute into the expression Now we substitute \(\hat{k} \times \hat{j}\) into the original expression: \[ (\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k} = (-\hat{i}) \cdot \hat{i} + \hat{j} \cdot \hat{k} \] ### Step 3: Calculate \((- \hat{i}) \cdot \hat{i}\) The dot product of a unit vector with itself is 1: \[ -\hat{i} \cdot \hat{i} = -1 \] ### Step 4: Calculate \(\hat{j} \cdot \hat{k}\) Since \(\hat{j}\) and \(\hat{k}\) are orthogonal unit vectors, their dot product is: \[ \hat{j} \cdot \hat{k} = 0 \] ### Step 5: Combine the results Now we can combine the results from Steps 3 and 4: \[ -1 + 0 = -1 \] ### Final Result Thus, the value of the expression \((\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k}\) is: \[ \boxed{-1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

The value of hat(i).(hat(j) xx hat(k))+ hat(j). (hat(i) xxhat(k)) + hat(k) . (hat(i) xx hat(j))

Write the value of ( hat ixx hat j)dot hat k+( hat j xx hat k)dot hat jdot

The value of hat i .( hat jxx hat k)+ hat j.( hat i+ hat k)+ hat k.( hat ixx hat j) is(A) 0 (B) 1 (C) 1 (D) 3

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

The value of hat i *( hat jxx hat k)+ hat j*( hat ixx hat k)+ hat k*( hat ixx hat j) is (A) 0 (B) 1 (C) 1 (D) 3

Write the value of hat ixx( hat j+ hat k)+ hat jxx( hat k+ hat i)+ hat kxx( hat i+ hat j)dot

Prove that hat(i) xx hat(j) = hat(k) hat(i) xx hat(j) = 1xx 1 sin 90 hat(n) = hat(n)

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :