Home
Class 12
MATHS
If |vec(a) xx vec(b)|^(2) + |vec(a) .vec...

If `|vec(a) xx vec(b)|^(2) + |vec(a) .vec(b)|^(2) = 400` and `|vec(a)| = 5`, then write the value of `|vec(b)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400 \] We also know that: \[ |\vec{a}| = 5 \] ### Step 1: Use the identity for the magnitudes We can use the identity that relates the magnitudes of the cross product and dot product: \[ |\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \] ### Step 2: Substitute the known values Substituting the known value of \(|\vec{a}|\): \[ |\vec{a}|^2 = 5^2 = 25 \] So the equation becomes: \[ |\vec{a}|^2 |\vec{b}|^2 = 400 \] Substituting \(|\vec{a}|^2\): \[ 25 |\vec{b}|^2 = 400 \] ### Step 3: Solve for \(|\vec{b}|^2\) Now we can solve for \(|\vec{b}|^2\): \[ |\vec{b}|^2 = \frac{400}{25} \] Calculating the right side: \[ |\vec{b}|^2 = 16 \] ### Step 4: Find \(|\vec{b}|\) Now, we take the square root to find \(|\vec{b}|\): \[ |\vec{b}| = \sqrt{16} = 4 \] Thus, the value of \(|\vec{b}|\) is: \[ |\vec{b}| = 4 \] ### Final Answer \[ |\vec{b}| = 4 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

If | vec a X vec b|^2+| vec adot vec b|^2=400 and | vec a|=5, then write the value of | vec b|dot

Find vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12

Knowledge Check

  • if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

    A
    12
    B
    3
    C
    4
    D
    `-3`
  • |vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

    A
    37
    B
    `sqrt37`
    C
    6
    D
    13
  • If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

    A
    0
    B
    1
    C
    38
    D
    `-19`
  • Similar Questions

    Explore conceptually related problems

    If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

    If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

    If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1 , then

    If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

    If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then