Home
Class 12
MATHS
Evaluate : int(sin x + cos x)/(9 + 16 si...

Evaluate : `int(sin x + cos x)/(9 + 16 sin 2x) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx, \] we will follow a systematic approach. ### Step 1: Substitute for \(\sin x + \cos x\) Let \[ t = \sin x - \cos x. \] Then, differentiating both sides with respect to \(x\): \[ dt = \cos x \, dx + \sin x \, dx = (\cos x + \sin x) \, dx. \] This implies: \[ dx = \frac{dt}{\cos x + \sin x}. \] ### Step 2: Express \(\sin x + \cos x\) in terms of \(t\) We can express \(\sin x + \cos x\) using the identity: \[ \sin^2 x + \cos^2 x = 1. \] From our substitution, we have: \[ \sin^2 x + \cos^2 x = 1, \] \[ (\sin x - \cos x)^2 = t^2 \implies \sin^2 x + \cos^2 x - 2\sin x \cos x = t^2. \] Thus, \[ 1 - 2\sin x \cos x = t^2 \implies \sin x \cos x = \frac{1 - t^2}{2}. \] ### Step 3: Rewrite \(\sin 2x\) Using the double angle identity: \[ \sin 2x = 2\sin x \cos x = 1 - t^2. \] ### Step 4: Substitute into the integral Now we substitute \(\sin 2x\) into the integral: \[ \int \frac{\sin x + \cos x}{9 + 16(1 - t^2)} \, dx = \int \frac{\sin x + \cos x}{9 + 16 - 16t^2} \, dx = \int \frac{\sin x + \cos x}{25 - 16t^2} \, dx. \] ### Step 5: Substitute \(dx\) Now substituting \(dx\): \[ \int \frac{(\sin x + \cos x)}{25 - 16t^2} \cdot \frac{dt}{\sin x + \cos x} = \int \frac{dt}{25 - 16t^2}. \] ### Step 6: Solve the integral This integral can be solved using the formula for the integral of the form \(\int \frac{dt}{a^2 - t^2}\): \[ \int \frac{dt}{a^2 - t^2} = \frac{1}{2a} \ln \left| \frac{a + t}{a - t} \right| + C. \] Here, \(a^2 = 25\) so \(a = 5\): \[ \int \frac{dt}{25 - 16t^2} = \frac{1}{10} \ln \left| \frac{5 + 4t}{5 - 4t} \right| + C. \] ### Step 7: Substitute back for \(t\) Now substituting back \(t = \sin x - \cos x\): \[ = \frac{1}{10} \ln \left| \frac{5 + 4(\sin x - \cos x)}{5 - 4(\sin x - \cos x)} \right| + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx = \frac{1}{10} \ln \left| \frac{5 + 4(\sin x - \cos x)}{5 - 4(\sin x - \cos x)} \right| + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (sin x +cos x ) sqrt(9 +16 sin 2x) dx

Evaluate : int (sin x+ cos x)/(sqrt(9+16sin2x))dx

evaluate int( sin x + cos x )^ 2 dx

Evaluate the following integrals Evaluate int (3 sin x+2 cos x)/(3 cos x + 2 sin x)dx

Evaluate: int1/(sin^2x cos^2x)\ dx

int(sin x+x cos x)/(x sin x)dx

Evaluate: int(sinx+cosx)/(9+16sin2x)\ dx

Evaluate: int(sinx+cosx)/(9+16sin2x)\ dx

Evaluate: int1/(sin^4x+cos^4x)dx

Evaluate: int1/(sin^4x+cos^4x)dx