Home
Class 12
MATHS
If |vec(a)| = 3, |vec(b)| = 4, then the ...

If `|vec(a)| = 3, |vec(b)| = 4`, then the value 'lambda' for which `vec(a) + lambda vec(b)` is perpendicular to `vec(a) - lambda vec(b)`, is

A

`(9)/(16)`

B

`(3)/(4)`

C

`(3)/(2)`

D

`(4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) for which the vector \( \vec{a} + \lambda \vec{b} \) is perpendicular to \( \vec{a} - \lambda \vec{b} \). ### Step-by-Step Solution: 1. **Understanding Perpendicular Vectors**: Two vectors \( \vec{u} \) and \( \vec{v} \) are perpendicular if their dot product is zero. Therefore, we need to set up the equation: \[ (\vec{a} + \lambda \vec{b}) \cdot (\vec{a} - \lambda \vec{b}) = 0 \] 2. **Expanding the Dot Product**: Using the distributive property of the dot product, we expand the left-hand side: \[ \vec{a} \cdot \vec{a} - \lambda \vec{a} \cdot \vec{b} + \lambda \vec{b} \cdot \vec{a} - \lambda^2 \vec{b} \cdot \vec{b} \] This simplifies to: \[ |\vec{a}|^2 - \lambda^2 |\vec{b}|^2 = 0 \] (Note: \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \)) 3. **Substituting Magnitudes**: We know that \( |\vec{a}| = 3 \) and \( |\vec{b}| = 4 \). Therefore: \[ |\vec{a}|^2 = 3^2 = 9 \] \[ |\vec{b}|^2 = 4^2 = 16 \] 4. **Setting Up the Equation**: Substitute the magnitudes into the equation: \[ 9 - \lambda^2 \cdot 16 = 0 \] 5. **Solving for \( \lambda^2 \)**: Rearranging gives: \[ \lambda^2 \cdot 16 = 9 \] \[ \lambda^2 = \frac{9}{16} \] 6. **Finding \( \lambda \)**: Taking the square root of both sides, we get: \[ \lambda = \pm \frac{3}{4} \] ### Conclusion: The value of \( \lambda \) for which \( \vec{a} + \lambda \vec{b} \) is perpendicular to \( \vec{a} - \lambda \vec{b} \) is \( \frac{3}{4} \) or \( -\frac{3}{4} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

Knowledge Check

  • If | vec(a) | =3 and |vec(b) |=4 , then the value of lambda for which vec(a) + lambda vec(b) and vec(a) - lambda vec(b) are perpendicular is

    A
    `(9)/( 16)`
    B
    `(3)/(4)`
    C
    `(3)/(2)`
    D
    `(4)/(3)`
  • |vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

    A
    37
    B
    `sqrt37`
    C
    6
    D
    13
  • If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

    A
    22
    B
    88
    C
    44
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If vec(a) and vec(b) are two vector such that |vec(a) +vec(b)| =|vec(a)| , then show that vector |2a +b| is perpendicular to vec(b) .

    If vec a , vec b are two vectors such that | vec a+ vec b|=| vec b|, then prove that vec a+2 vec b is perpendicular to vec a .

    If abs(vec(a)+vec(b))=abs(vec(a)-vec(b)) , then show that vec(a) and vec(b) are perpendicular to each other.

    If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

    If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is