Home
Class 11
MATHS
Prove that sin (x + y ) sin (x -y) + s...

Prove that
`sin (x + y ) sin (x -y) + sin ( y+ z) sin (y - z) + sin (z+x) sin (z-x) = 0.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \sin(x+y) \sin(x-y) + \sin(y+z) \sin(y-z) + \sin(z+x) \sin(z-x) = 0, \] we will use the product-to-sum identities for sine functions. ### Step 1: Apply the Product-to-Sum Identity We know that: \[ \sin(a+b) \sin(a-b) = \frac{1}{2} [\cos(2b) - \cos(2a)] \] Using this identity, we can rewrite each term in the left-hand side (LHS): 1. For \(\sin(x+y) \sin(x-y)\): \[ \sin(x+y) \sin(x-y) = \frac{1}{2} [\cos(2y) - \cos(2x)] \] 2. For \(\sin(y+z) \sin(y-z)\): \[ \sin(y+z) \sin(y-z) = \frac{1}{2} [\cos(2z) - \cos(2y)] \] 3. For \(\sin(z+x) \sin(z-x)\): \[ \sin(z+x) \sin(z-x) = \frac{1}{2} [\cos(2x) - \cos(2z)] \] ### Step 2: Combine the Terms Now, substituting these results back into the LHS: \[ \text{LHS} = \frac{1}{2} [\cos(2y) - \cos(2x)] + \frac{1}{2} [\cos(2z) - \cos(2y)] + \frac{1}{2} [\cos(2x) - \cos(2z)] \] ### Step 3: Simplify the Expression Combining these terms gives: \[ \text{LHS} = \frac{1}{2} [\cos(2y) - \cos(2x) + \cos(2z) - \cos(2y) + \cos(2x) - \cos(2z)] \] Notice that \(\cos(2y)\) cancels out, \(\cos(2x)\) cancels out, and \(\cos(2z)\) cancels out: \[ \text{LHS} = \frac{1}{2} [0] = 0 \] ### Conclusion Thus, we have shown that: \[ \sin(x+y) \sin(x-y) + \sin(y+z) \sin(y-z) + \sin(z+x) \sin(z-x) = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0

Prove that, sinx.siny.sin(x-y) + siny.sinz.sin(y-z) + sinz.sinx.sin(z-x) + sin(x-y).sin(y-z).sin(z-x)=0

Prove that : (sin (x+y))/(sin (x-y) )= (sin x. cos y + cos x . Sin y)/(sin x. cos y-cos x. sin y)

Prove that : (sin x + sin y)/(sin x - sin y) = tan ((x+y)/2).cot ((x-y)/2)

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Solve the system: x sin a + y sin 2a + z sin 3a = sin 4a x sin b + y sin 2b + z sin 3b = sin 4b x sin c + y sin 2c + z sin 3c = sin 4c

The value of sinx siny sin(x-y)+sinysinz sin(y-z) +sinz sinx sin(z-x)+sin(x-y)sin(y-z)sin(z-x), is

Prove that: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)