Home
Class 11
MATHS
Prove that (sin (A - B))/( sin A sin B )...

Prove that `(sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \[ \frac{\sin(A - B)}{\sin A \sin B} + \frac{\sin(B - C)}{\sin B \sin C} + \frac{\sin(C - A)}{\sin C \sin A} = 0, \] we will use the sine subtraction formula and manipulate the expression step by step. ### Step 1: Apply the Sine Subtraction Formula We start by using the identity for sine of a difference: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B. \] Using this identity, we rewrite each term in the left-hand side (LHS): \[ \frac{\sin(A - B)}{\sin A \sin B} = \frac{\sin A \cos B - \cos A \sin B}{\sin A \sin B}. \] Thus, we can express the LHS as: \[ \frac{\sin A \cos B}{\sin A \sin B} - \frac{\cos A \sin B}{\sin A \sin B} + \frac{\sin(B - C)}{\sin B \sin C} + \frac{\sin(C - A)}{\sin C \sin A}. \] ### Step 2: Rewrite the Other Terms Now, we apply the sine subtraction formula to the other two terms: 1. For \( \sin(B - C) \): \[ \sin(B - C) = \sin B \cos C - \cos B \sin C, \] which gives: \[ \frac{\sin(B - C)}{\sin B \sin C} = \frac{\sin B \cos C - \cos B \sin C}{\sin B \sin C}. \] 2. For \( \sin(C - A) \): \[ \sin(C - A) = \sin C \cos A - \cos C \sin A, \] which gives: \[ \frac{\sin(C - A)}{\sin C \sin A} = \frac{\sin C \cos A - \cos C \sin A}{\sin C \sin A}. \] ### Step 3: Combine All Terms Now we can combine all the terms: \[ \frac{\sin A \cos B}{\sin A \sin B} - \frac{\cos A \sin B}{\sin A \sin B} + \frac{\sin B \cos C}{\sin B \sin C} - \frac{\cos B \sin C}{\sin B \sin C} + \frac{\sin C \cos A}{\sin C \sin A} - \frac{\cos C \sin A}{\sin C \sin A}. \] ### Step 4: Simplify Each Fraction Now we can simplify each term: 1. The first term becomes \( \frac{\cos B}{\sin B} = \cot B \). 2. The second term becomes \( -\frac{\cos A}{\sin A} = -\cot A \). 3. The third term becomes \( \frac{\cos C}{\sin C} = \cot C \). 4. The fourth term becomes \( -\frac{\cos B}{\sin B} = -\cot B \). 5. The fifth term becomes \( \frac{\cos A}{\sin A} = \cot A \). 6. The sixth term becomes \( -\frac{\cos C}{\sin C} = -\cot C \). ### Step 5: Combine Like Terms Now we can combine like terms: \[ \cot A - \cot A + \cot B - \cot B + \cot C - \cot C = 0. \] ### Conclusion Thus, we have shown that: \[ \frac{\sin(A - B)}{\sin A \sin B} + \frac{\sin(B - C)}{\sin B \sin C} + \frac{\sin(C - A)}{\sin C \sin A} = 0. \] Therefore, we conclude that the original statement is proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (B) |35 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Prove that: ("sin"(A-B))/(cos A cosB)+(sin(B-C))/(cos B cos C)+("sin"(C-A))/(cos C cos A)=0

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that : (sin A - sin B)/ (cos A + cos B) + (cos A - cos B)/ (sin A + sin B) = 0

19. Prove that sin(A +B) sin(A-B)+sin(B+C)sin(B-C) + sin(C+A) sin(C-A)=0

Prove that: (sin(A-C)+2sinA+sin(A+C)) / ("sin"("B"-"C")+2sinB+"sin"(B+C)) = (sinA)/(sinB)

Prove that: (sin(A-B))/(cosAcosB)+(sin(B-C))/(cosBcosc)+(sin(C-A))/(cosCcosA)=0

Prove that (a^2sin(B-C))/(sinb+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0

Prove that: (sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)