Home
Class 11
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `x^(2)+px+q=0`, find the value of
(a) `alpha^(3)beta+alphabeta^(3)`
(b) `alpha^(4)+alpha^(2)beta^(2)+beta^(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the values for both parts (a) and (b) as requested. ### Given: The roots of the quadratic equation \( x^2 + px + q = 0 \) are \( \alpha \) and \( \beta \). ### Step 1: Find the sum and product of the roots Using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -p \) - The product of the roots \( \alpha \beta = q \) ### Step 2: Solve part (a) \( \alpha^3 \beta + \alpha \beta^3 \) We can factor this expression: \[ \alpha^3 \beta + \alpha \beta^3 = \alpha \beta (\alpha^2 + \beta^2) \] Now, we know \( \alpha \beta = q \). Next, we need to find \( \alpha^2 + \beta^2 \). Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values we have: \[ \alpha^2 + \beta^2 = (-p)^2 - 2q = p^2 - 2q \] Now substituting back into our expression for part (a): \[ \alpha^3 \beta + \alpha \beta^3 = q(p^2 - 2q) \] Thus, the final answer for part (a) is: \[ \alpha^3 \beta + \alpha \beta^3 = qp^2 - 2q^2 \] ### Step 3: Solve part (b) \( \alpha^4 + \alpha^2 \beta^2 + \beta^4 \) We can rewrite this expression as: \[ \alpha^4 + \beta^4 + \alpha^2 \beta^2 \] Using the identity for \( \alpha^4 + \beta^4 \): \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2 \beta^2 \] Substituting \( \alpha^2 + \beta^2 = p^2 - 2q \): \[ \alpha^4 + \beta^4 = (p^2 - 2q)^2 - 2(\alpha \beta)^2 = (p^2 - 2q)^2 - 2q^2 \] Now substituting back into our expression for part (b): \[ \alpha^4 + \beta^4 + \alpha^2 \beta^2 = (p^2 - 2q)^2 - 2q^2 + q^2 \] This simplifies to: \[ (p^2 - 2q)^2 - q^2 \] Now applying the identity \( a^2 - b^2 = (a - b)(a + b) \): Let \( a = p^2 - 2q \) and \( b = q \): \[ = (p^2 - 2q - q)(p^2 - 2q + q) = (p^2 - 3q)(p^2 - q) \] Thus, the final answer for part (b) is: \[ \alpha^4 + \alpha^2 \beta^2 + \beta^4 = (p^2 - 3q)(p^2 - q) \] ### Final Answers: (a) \( \alpha^3 \beta + \alpha \beta^3 = qp^2 - 2q^2 \) (b) \( \alpha^4 + \alpha^2 \beta^2 + \beta^4 = (p^2 - 3q)(p^2 - q) \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (d)|14 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (e)|4 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (b)|16 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

Knowledge Check

  • If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

    A
    `(q)/(p^(3))`
    B
    `-(q)/(p^(3))`
    C
    `(p)/(q^(3))`
    D
    `-(p)/(q^(3))`
  • If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

    A
    `-2`
    B
    0
    C
    30
    D
    34
  • If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

    A
    `-(3)/(5)`
    B
    `(3)/(5)`
    C
    `(5)/(3)`
    D
    `-(5)/(3)`
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta are the roots of the equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alphabeta .

    If alpha and beta are the roots of the equation px^(2) + qx + 1 = , find alpha^(2) beta + beta^(2)alpha .

    If alpha and beta are the roots of the quadratic equation px^(2)+qx+1 , Then the value of alphabeta+alpha^(2)beta^(2) is

    If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

    If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)