Home
Class 11
MATHS
Using binomial theorem, expand [ ( x+y)^...

Using binomial theorem, expand `[ ( x+y)^(5) + (x-y)^(5) ]` and hence find the value of `[ ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) ]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will first expand \((x+y)^5 + (x-y)^5\) using the Binomial Theorem and then substitute specific values to find the required expression. ### Step 1: Expand \((x+y)^5\) using the Binomial Theorem According to the Binomial Theorem, we have: \[ (x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For \(n=5\), the expansion of \((x+y)^5\) is: \[ (x+y)^5 = \binom{5}{0} x^5 y^0 + \binom{5}{1} x^4 y^1 + \binom{5}{2} x^3 y^2 + \binom{5}{3} x^2 y^3 + \binom{5}{4} x^1 y^4 + \binom{5}{5} x^0 y^5 \] Calculating the binomial coefficients: \[ = 1 \cdot x^5 + 5 \cdot x^4 y + 10 \cdot x^3 y^2 + 10 \cdot x^2 y^3 + 5 \cdot x y^4 + 1 \cdot y^5 \] Thus, \[ (x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5 \] ### Step 2: Expand \((x-y)^5\) using the Binomial Theorem Now, we expand \((x-y)^5\): \[ (x-y)^5 = \sum_{k=0}^{5} \binom{5}{k} x^{5-k} (-y)^k \] This gives: \[ = \binom{5}{0} x^5 (-y)^0 + \binom{5}{1} x^4 (-y)^1 + \binom{5}{2} x^3 (-y)^2 + \binom{5}{3} x^2 (-y)^3 + \binom{5}{4} x^1 (-y)^4 + \binom{5}{5} x^0 (-y)^5 \] Calculating the terms: \[ = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5 \] ### Step 3: Add the two expansions Now we add \((x+y)^5\) and \((x-y)^5\): \[ (x+y)^5 + (x-y)^5 = (x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5) + (x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5) \] Combining like terms: \[ = 2x^5 + 0 + 20x^3y^2 + 0 + 10xy^4 + 0 \] Thus, we have: \[ (x+y)^5 + (x-y)^5 = 2x^5 + 20x^3y^2 + 10xy^4 \] ### Step 4: Substitute \(x = \sqrt{3}\) and \(y = 1\) Now we substitute \(x = \sqrt{3}\) and \(y = 1\) into the expression: \[ 2(\sqrt{3})^5 + 20(\sqrt{3})^3(1)^2 + 10(\sqrt{3})(1)^4 \] Calculating each term: 1. \((\sqrt{3})^5 = 3^{5/2} = 3^2 \cdot \sqrt{3} = 9\sqrt{3}\) 2. \((\sqrt{3})^3 = 3^{3/2} = 3\sqrt{3}\) Substituting these values: \[ = 2(9\sqrt{3}) + 20(3\sqrt{3}) + 10(\sqrt{3}) \] \[ = 18\sqrt{3} + 60\sqrt{3} + 10\sqrt{3} \] Combining these: \[ = (18 + 60 + 10)\sqrt{3} = 88\sqrt{3} \] ### Final Answer Thus, the value of \((\sqrt{3}+1)^5 - (\sqrt{3}-1)^5\) is: \[ \boxed{88\sqrt{3}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (b)|33 Videos
  • BINOMIAL THEOREM

    ICSE|Exercise CHAPTER TEST|14 Videos
  • BINOMIAL THEOREM

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|21 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand (x+1/y)^(11)dot

Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the value of {(sqrt(2)+1)^5+(sqrt(2)-1)^5}dot

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

By using binomial theorem, expand: (1+x+x^2)^3

Using binomial theorem compute : (10. 1)^5

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

Expand : (5x +3y)^3

Use binomial theorem to evaluate (10.1)^(5) .

Evaluate the following: \ (sqrt(3)+1)^5-(sqrt(3)-1)^5

Using binomial theorem, write down the expansion of (2x+3y)^5