Home
Class 12
MATHS
Given A = [a(y)](2 xx 2) "where " a(y) =...

Given `A = [a_(y)]_(2 xx 2) "where " a_(y) = {{:((|-3i + j|)/(2) if i ne j ),((i + j)^(2) If i = j ):} " then " a_(11) + a_(21) = `

A

`6 . 5 `

B

`4 . 5 `

C

20

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a_{11} \) and \( a_{21} \) based on the given definitions of the matrix elements. ### Step 1: Identify the values of \( a_{11} \) and \( a_{21} \). The matrix \( A \) is defined as follows: - \( a_{ij} = \frac{|-3i + j|}{2} \) if \( i \neq j \) - \( a_{ij} = (i + j)^2 \) if \( i = j \) ### Step 2: Calculate \( a_{11} \). Since \( a_{11} \) corresponds to \( i = 1 \) and \( j = 1 \), we use the second case of the definition: \[ a_{11} = (1 + 1)^2 \] Calculating this gives: \[ a_{11} = 2^2 = 4 \] ### Step 3: Calculate \( a_{21} \). For \( a_{21} \), we have \( i = 2 \) and \( j = 1 \), so we use the first case of the definition since \( i \neq j \): \[ a_{21} = \frac{|-3(2) + 1|}{2} \] Calculating the expression inside the absolute value: \[ -3(2) + 1 = -6 + 1 = -5 \] Now, taking the absolute value: \[ |-5| = 5 \] Now substituting back into the equation for \( a_{21} \): \[ a_{21} = \frac{5}{2} \] ### Step 4: Calculate \( a_{11} + a_{21} \). Now we can find the sum: \[ a_{11} + a_{21} = 4 + \frac{5}{2} \] To add these, we convert \( 4 \) into a fraction: \[ 4 = \frac{8}{2} \] Now we can add: \[ a_{11} + a_{21} = \frac{8}{2} + \frac{5}{2} = \frac{8 + 5}{2} = \frac{13}{2} \] ### Final Result Thus, the final result is: \[ a_{11} + a_{21} = \frac{13}{2} = 6.5 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

Knowledge Check

  • If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

    A
    I
    B
    A
    C
    Zero matrix
    D
    None of these
  • If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

    A
    I
    B
    A
    C
    O
    D
    none of these
  • If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

    A
    A
    B
    I
    C
    O
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

    Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

    If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

    Construct a_(2xx2) matrix, where (i) a_(ij)=((i-2j)^(2))/(2) (ii) a_(ij)=|-2hati+3j|

    Let A=|a_(ij)|" be a "3xx3 matrix where a_(ij)={{:((i^(j)-j^(i)+2ij)x,iltj),(1,igtj","),(0,i=j):} , then the minimum value of |A| is equal to (where x is a real number)