Home
Class 12
MATHS
If vec(a) = 2 hat(i) - hat(j) + hat(k) a...

If `vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) ` then projection of `vec(b)' on ' vec(a)` is

A

`(5 sqrt(6))/(3)`

B

`(5)/(sqrt(6))`

C

`(5)/(sqrt(6))`

D

`5 sqrt(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector **b** on vector **a**, we can use the formula for the projection of one vector onto another. The projection of vector **b** onto vector **a** is given by: \[ \text{proj}_{\vec{a}} \vec{b} = \left( \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \right) \vec{a} \] ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \] ### Step 2: Calculate the dot product \(\vec{b} \cdot \vec{a}\) The dot product is calculated as follows: \[ \vec{b} \cdot \vec{a} = (1)(2) + (-2)(-1) + (1)(1) \] Calculating each term: - \(1 \cdot 2 = 2\) - \(-2 \cdot -1 = 2\) - \(1 \cdot 1 = 1\) Now, summing these results: \[ \vec{b} \cdot \vec{a} = 2 + 2 + 1 = 5 \] ### Step 3: Calculate the magnitude of \(\vec{a}\) The magnitude of vector **a** is given by: \[ |\vec{a}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} \] Calculating each term: - \(2^2 = 4\) - \((-1)^2 = 1\) - \(1^2 = 1\) Now, summing these: \[ |\vec{a}| = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 4: Calculate \(|\vec{a}|^2\) \[ |\vec{a}|^2 = (\sqrt{6})^2 = 6 \] ### Step 5: Substitute into the projection formula Now we can substitute into the projection formula: \[ \text{proj}_{\vec{a}} \vec{b} = \left( \frac{5}{6} \right) \vec{a} \] ### Step 6: Write the final projection vector Substituting \(\vec{a}\): \[ \text{proj}_{\vec{a}} \vec{b} = \frac{5}{6} (2\hat{i} - \hat{j} + \hat{k}) = \frac{10}{6}\hat{i} - \frac{5}{6}\hat{j} + \frac{5}{6}\hat{k} \] This simplifies to: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{5}{3}\hat{i} - \frac{5}{6}\hat{j} + \frac{5}{6}\hat{k} \] ### Final Answer The projection of vector **b** on vector **a** is: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{5}{3}\hat{i} - \frac{5}{6}\hat{j} + \frac{5}{6}\hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

Knowledge Check

  • If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

    A
    3
    B
    4
    C
    5
    D
    1
  • If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

    A
    `(pi)/(2)`
    B
    `(pi)/(2)`
    C
    `(pi)/(6)`
    D
    `pi`
  • If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

    A
    8
    B
    `-8`
    C
    `8sqrt3`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

    If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

    If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is