Home
Class 12
MATHS
The adjacent sides of a parallelogram ar...

The adjacent sides of a parallelogram are `hat(i) + 2 hat(j) + 3 hat(k) and 2 hat (i) - hat(j) + hat(k)` . Find the unit vectors parallel to diagonals.

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vectors parallel to the diagonals of the parallelogram formed by the given adjacent sides, we can follow these steps: ### Step 1: Define the vectors Let: - \( \mathbf{a} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \) ### Step 2: Calculate the diagonal vector \( \mathbf{d_1} \) The first diagonal \( \mathbf{d_1} \) can be found by adding the two vectors: \[ \mathbf{d_1} = \mathbf{a} + \mathbf{b} \] Calculating this gives: \[ \mathbf{d_1} = (\hat{i} + 2\hat{j} + 3\hat{k}) + (2\hat{i} - \hat{j} + \hat{k}) = (1 + 2)\hat{i} + (2 - 1)\hat{j} + (3 + 1)\hat{k} = 3\hat{i} + \hat{j} + 4\hat{k} \] ### Step 3: Find the magnitude of \( \mathbf{d_1} \) The magnitude of \( \mathbf{d_1} \) is calculated as follows: \[ |\mathbf{d_1}| = \sqrt{(3)^2 + (1)^2 + (4)^2} = \sqrt{9 + 1 + 16} = \sqrt{26} \] ### Step 4: Calculate the unit vector parallel to diagonal \( \mathbf{d_1} \) The unit vector \( \mathbf{u_1} \) parallel to diagonal \( \mathbf{d_1} \) is given by: \[ \mathbf{u_1} = \frac{\mathbf{d_1}}{|\mathbf{d_1}|} = \frac{3\hat{i} + \hat{j} + 4\hat{k}}{\sqrt{26}} = \frac{3}{\sqrt{26}}\hat{i} + \frac{1}{\sqrt{26}}\hat{j} + \frac{4}{\sqrt{26}}\hat{k} \] ### Step 5: Calculate the diagonal vector \( \mathbf{d_2} \) The second diagonal \( \mathbf{d_2} \) can be found by subtracting the two vectors: \[ \mathbf{d_2} = \mathbf{b} - \mathbf{a} \] Calculating this gives: \[ \mathbf{d_2} = (2\hat{i} - \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (1 - 3)\hat{k} = \hat{i} - 3\hat{j} - 2\hat{k} \] ### Step 6: Find the magnitude of \( \mathbf{d_2} \) The magnitude of \( \mathbf{d_2} \) is calculated as follows: \[ |\mathbf{d_2}| = \sqrt{(1)^2 + (-3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] ### Step 7: Calculate the unit vector parallel to diagonal \( \mathbf{d_2} \) The unit vector \( \mathbf{u_2} \) parallel to diagonal \( \mathbf{d_2} \) is given by: \[ \mathbf{u_2} = \frac{\mathbf{d_2}}{|\mathbf{d_2}|} = \frac{\hat{i} - 3\hat{j} - 2\hat{k}}{\sqrt{14}} = \frac{1}{\sqrt{14}}\hat{i} - \frac{3}{\sqrt{14}}\hat{j} - \frac{2}{\sqrt{14}}\hat{k} \] ### Final Result The unit vectors parallel to the diagonals of the parallelogram are: - \( \mathbf{u_1} = \frac{3}{\sqrt{26}}\hat{i} + \frac{1}{\sqrt{26}}\hat{j} + \frac{4}{\sqrt{26}}\hat{k} \) - \( \mathbf{u_2} = \frac{1}{\sqrt{14}}\hat{i} - \frac{3}{\sqrt{14}}\hat{j} - \frac{2}{\sqrt{14}}\hat{k} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

The two adjacent sides of a parallelogram are 2 hat i-4 hat j+5 hat k and hat i-2 hat j-3 hat k . Find the unit vector parallel to one of its diagonals. Also, find its area.

The two adjacent sides of a parallelogram are 2 hat i-4 hat j+5 hat k and hat i-2 hat j-3 hat k . Find the unit vector parallel to one of its diagonals. Also, find its area.

Knowledge Check

  • A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

    A
    `(5 sqrt(3) ( hat(i) + hat(j) + hat(k)))/( 3)`
    B
    `(5 sqrt(3) ( hat(i) - hat(j) + hat(k)))/( 3)`
    C
    `(5 sqrt(3) ( hat(i) - hat(j) - hat(k)))/( 3)`
    D
    `(5 sqrt(3) ( hat(i) + hat(j) - hat(k)))/( sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    The two adjacent sides of a parallelogram are 2 hat i-4 hat j-5 hat k and 2 hat i+2 hat j+3 hat kdot Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

    The area of the parallelogram whose adjacent sides are hat(i) + hat(k) and 2 hat(i) + hat(j) + hat(k) is ?

    The sides of a parallelogram are 2 hat i+4 hat j-5 hat k and hat i+2 hat j+3 hat k . The unit vector parallel to one of the diagonals is a. 1/7(3 hat i+6 hat j-2 hat k) b. 1/7(3 hat i-6 hat j-2 hat k) c. 1/(sqrt(69))( hat i+6 hat j+8 hat k) d. 1/(sqrt(69))(- hat i-2 hat j+8 hat k)

    The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat(j) + 3hat(k) and q = 3hat(i) + 2hat(j) - hat(k) . Then the area of the parallelogram is :

    Two adjacent sides of a parallelogram are respectively by the two vectors hat(i)+2hat(j)+3hat(k) and 3hat(i)-2hat(j)+hat(k) . What is the area of parallelogram?

    The diagonals of a parallelogram are given by the vectors (3 hat(i) + hat(j) + 2hat(k)) and ( hat(i) - 3hat(j) + 4hat(k)) in m . Find the area of the parallelogram .

    Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .