Home
Class 10
MATHS
Evaluate : if possible (i) [3,2] [{:(,...

Evaluate : if possible
(i) `[3,2] [{:(,2),(,0):}]` (ii) `[1 , -2] [{:(,-2,3),(,-1,4):}]`
(iii) `[{:(,6,4),(,3,-1):}] [{:(,-1),(,3):}]` (iv) `[{:(,6,4),(,3,-1):}] [{:(,-1),(,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate each part step by step. ### Part (i): Evaluate `[3, 2]` and `[{(2),(0)}]` 1. Identify the dimensions of the matrices: - The first matrix `[3, 2]` is a 1x2 matrix. - The second matrix `[{(2),(0)}]` is a 2x1 matrix. 2. Check if multiplication is possible: - The number of columns in the first matrix (2) matches the number of rows in the second matrix (2). Therefore, multiplication is possible. 3. Perform the multiplication: \[ [3, 2] \cdot \begin{bmatrix} 2 \\ 0 \end{bmatrix} = (3 \cdot 2) + (2 \cdot 0) = 6 + 0 = 6 \] ### Part (ii): Evaluate `[1, -2]` and `[{(-2, 3), (-1, 4)}]` 1. Identify the dimensions of the matrices: - The first matrix `[1, -2]` is a 1x2 matrix. - The second matrix `[{(-2, 3), (-1, 4)}]` is a 2x2 matrix. 2. Check if multiplication is possible: - The number of columns in the first matrix (2) matches the number of rows in the second matrix (2). Therefore, multiplication is possible. 3. Perform the multiplication: \[ [1, -2] \cdot \begin{bmatrix} -2 & 3 \\ -1 & 4 \end{bmatrix} = (1 \cdot -2 + -2 \cdot -1, 1 \cdot 3 + -2 \cdot 4) \] \[ = (-2 + 2, 3 - 8) = (0, -5) \] ### Part (iii): Evaluate `[{(6, 4), (3, -1)}]` and `[{(-1), (3)}]` 1. Identify the dimensions of the matrices: - The first matrix `[{(6, 4), (3, -1)}]` is a 2x2 matrix. - The second matrix `[{(-1), (3)}]` is a 2x1 matrix. 2. Check if multiplication is possible: - The number of columns in the first matrix (2) matches the number of rows in the second matrix (2). Therefore, multiplication is possible. 3. Perform the multiplication: \[ \begin{bmatrix} 6 & 4 \\ 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix} = (6 \cdot -1 + 4 \cdot 3, 3 \cdot -1 + -1 \cdot 3) \] \[ = (-6 + 12, -3 - 3) = (6, -6) \] ### Part (iv): Evaluate `[{(6, 4), (3, -1)}]` and `[{(-1), (3)}]` This part is identical to part (iii), so the evaluation will yield the same result. 1. The result is: \[ (6, -6) \] ### Summary of Results: - Part (i): 6 - Part (ii): (0, -5) - Part (iii): (6, -6) - Part (iv): (6, -6)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9D|25 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Wherever possible write each of the following as a single matrix. (i) [{:(,1,2),(,3,4):}]+[{:(,-1,-2),(,1,-7):}] (ii) [{:(,2,3,4),(,5,6,7):}]-[{:(,0,2,3),(,6,-1,0):}] (iii) [{:(,0,1,2),(,4,6,7):}]+[{:(,3,4),(,6,8):}]

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Are the following matrices invertible ? (i) |{:(2,-3),(1,4):}| (ii) |{:(7,0),(3,1):}| (iii) |{:(1,-2,-3),(1,-3,-4),(1,-4,-5):}| (iv) |{:(2,3,-1),(0,1,4),(-5,0,-2):}| (v) |{:(0,1,2),(1,2,3),(3,1,1):}|

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not ? (i) R={(4,1),(5,1),(6,7)} (ii) R={(2,3),(2,5),(3,3),(6,6)} (iii) R={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} (iv) R={(1,1),(2,1),(3,1),(4,1),(5,1)}

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}) , then A=

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,