Home
Class 10
MATHS
Find x and y if [{:(,3,-2),(,-1,4):}] ...

Find x and y if
`[{:(,3,-2),(,-1,4):}] [{:(,2x),(,1):}] +2 [{:(,-4),(,5):}] =4[{:(,2),(,y):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we need to manipulate the matrices step by step. Let's break it down: Given: \[ \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2x \\ 1 \end{pmatrix} + 2 \begin{pmatrix} -4 \\ 5 \end{pmatrix} = 4 \begin{pmatrix} 2 \\ y \end{pmatrix} \] ### Step 1: Multiply the first matrix with the vector We start by multiplying the first matrix with the vector: \[ \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2x \\ 1 \end{pmatrix} \] Calculating the multiplication: - For the first row: \(3(2x) + (-2)(1) = 6x - 2\) - For the second row: \(-1(2x) + 4(1) = -2x + 4\) So, we have: \[ \begin{pmatrix} 6x - 2 \\ -2x + 4 \end{pmatrix} \] ### Step 2: Multiply the scalar with the second matrix Next, we calculate: \[ 2 \begin{pmatrix} -4 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \cdot -4 \\ 2 \cdot 5 \end{pmatrix} = \begin{pmatrix} -8 \\ 10 \end{pmatrix} \] ### Step 3: Add the results from Step 1 and Step 2 Now, we add the two results: \[ \begin{pmatrix} 6x - 2 \\ -2x + 4 \end{pmatrix} + \begin{pmatrix} -8 \\ 10 \end{pmatrix} = \begin{pmatrix} (6x - 2) + (-8) \\ (-2x + 4) + 10 \end{pmatrix} \] Calculating the components: - First component: \(6x - 2 - 8 = 6x - 10\) - Second component: \(-2x + 4 + 10 = -2x + 14\) So, we have: \[ \begin{pmatrix} 6x - 10 \\ -2x + 14 \end{pmatrix} \] ### Step 4: Multiply the right side of the equation Now, we calculate the right side: \[ 4 \begin{pmatrix} 2 \\ y \end{pmatrix} = \begin{pmatrix} 4 \cdot 2 \\ 4 \cdot y \end{pmatrix} = \begin{pmatrix} 8 \\ 4y \end{pmatrix} \] ### Step 5: Set the components equal to each other Now, we set the two matrices equal to each other: \[ \begin{pmatrix} 6x - 10 \\ -2x + 14 \end{pmatrix} = \begin{pmatrix} 8 \\ 4y \end{pmatrix} \] This gives us two equations: 1. \(6x - 10 = 8\) 2. \(-2x + 14 = 4y\) ### Step 6: Solve the first equation for x From the first equation: \[ 6x - 10 = 8 \] Add 10 to both sides: \[ 6x = 18 \] Now, divide by 6: \[ x = 3 \] ### Step 7: Substitute x into the second equation to find y Now substitute \(x = 3\) into the second equation: \[ -2(3) + 14 = 4y \] This simplifies to: \[ -6 + 14 = 4y \] \[ 8 = 4y \] Now, divide by 4: \[ y = 2 \] ### Final Answer Thus, the values of \(x\) and \(y\) are: \[ x = 3, \quad y = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9C|38 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12):}]

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

Knowledge Check

  • Find [(x),(y)]if[(3,2),(-1,4)][(x),(y)]=[(-5),(4)] .

    A
    `[(-2,0.5)]`
    B
    `[(-5//6),(1)]`
    C
    `[(-1,3//4)]`
    D
    `[(-2),(1//2)]`
  • Similar Questions

    Explore conceptually related problems

    Find x and y, if : [3x 8] [{:(,1,4),(,3,7):}] -3 [2 -7]=5[3,2y]

    Find x and y from the following equations: (i) [{:(,5,2),(,-1,y-1):}]-[{:(,1,x-1),(,2,-3):}] =[{:(,4,7),(,-3,2):}] (ii) [-8,x]+[y-2]=[-3,2]

    Evaluate x and y if {:[(5,-3),(x,4)]:}={:[(y-3,-3),(2x+2,4)]:} .

    Find X if Y=[(3, 2),( 1, 4)] and 2X+Y=[(1, 0),(-3, 2)] .

    Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

    Find x ,\ y ,\ a and b if [(2x-3y ,a-b,3),(1,x+4y,3a+4b)]=[(1,-2, 3),( 1, 6 ,29)]

    Find x ,\ y ,\ z ,\ t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .