Home
Class 12
MATHS
Minimise Z = 6x + 3y, subject to the con...

Minimise Z = 6x + 3y, subject to the constraints `4x + y ge 80, x + 5y ge 115, 3x + 2y le 150, x ge 0, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To minimize the objective function \( Z = 6x + 3y \) subject to the given constraints, we will follow these steps: ### Step 1: Write down the constraints The constraints given are: 1. \( 4x + y \geq 80 \) 2. \( x + 5y \geq 115 \) 3. \( 3x + 2y \leq 150 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert inequalities to equations To find the feasible region, we convert the inequalities into equations: 1. \( 4x + y = 80 \) (Equation 1) 2. \( x + 5y = 115 \) (Equation 2) 3. \( 3x + 2y = 150 \) (Equation 3) ### Step 3: Find intercepts for each equation **For Equation 1:** - When \( x = 0 \): \( y = 80 \) (Point: \( (0, 80) \)) - When \( y = 0 \): \( x = 20 \) (Point: \( (20, 0) \)) **For Equation 2:** - When \( x = 0 \): \( 5y = 115 \) → \( y = 23 \) (Point: \( (0, 23) \)) - When \( y = 0 \): \( x = 115 \) (Point: \( (115, 0) \)) **For Equation 3:** - When \( x = 0 \): \( 2y = 150 \) → \( y = 75 \) (Point: \( (0, 75) \)) - When \( y = 0 \): \( 3x = 150 \) → \( x = 50 \) (Point: \( (50, 0) \)) ### Step 4: Plot the lines and find intersection points Next, we will find the points of intersection of the lines: **Intersection of Equation 1 and Equation 2:** 1. \( 4x + y = 80 \) 2. \( x + 5y = 115 \) From Equation 1, express \( y \): \[ y = 80 - 4x \] Substituting into Equation 2: \[ x + 5(80 - 4x) = 115 \] \[ x + 400 - 20x = 115 \] \[ -19x = -285 \] \[ x = 15 \] Now substitute \( x = 15 \) back into Equation 1: \[ 4(15) + y = 80 \] \[ 60 + y = 80 \] \[ y = 20 \] So the intersection point is \( (15, 20) \). **Intersection of Equation 1 and Equation 3:** 1. \( 4x + y = 80 \) 2. \( 3x + 2y = 150 \) From Equation 1, express \( y \): \[ y = 80 - 4x \] Substituting into Equation 3: \[ 3x + 2(80 - 4x) = 150 \] \[ 3x + 160 - 8x = 150 \] \[ -5x = -10 \] \[ x = 2 \] Now substitute \( x = 2 \) back into Equation 1: \[ 4(2) + y = 80 \] \[ 8 + y = 80 \] \[ y = 72 \] So the intersection point is \( (2, 72) \). **Intersection of Equation 2 and Equation 3:** 1. \( x + 5y = 115 \) 2. \( 3x + 2y = 150 \) From Equation 2, express \( x \): \[ x = 115 - 5y \] Substituting into Equation 3: \[ 3(115 - 5y) + 2y = 150 \] \[ 345 - 15y + 2y = 150 \] \[ -13y = -195 \] \[ y = 15 \] Now substitute \( y = 15 \) back into Equation 2: \[ x + 5(15) = 115 \] \[ x + 75 = 115 \] \[ x = 40 \] So the intersection point is \( (40, 15) \). ### Step 5: Identify the corner points The corner points of the feasible region are: 1. \( (0, 72) \) 2. \( (15, 20) \) 3. \( (40, 15) \) 4. \( (20, 0) \) (from the first constraint) ### Step 6: Evaluate the objective function at each corner point Now, we evaluate \( Z = 6x + 3y \) at each corner point: 1. At \( (0, 72) \): \[ Z = 6(0) + 3(72) = 216 \] 2. At \( (15, 20) \): \[ Z = 6(15) + 3(20) = 90 + 60 = 150 \] 3. At \( (40, 15) \): \[ Z = 6(40) + 3(15) = 240 + 45 = 285 \] 4. At \( (20, 0) \): \[ Z = 6(20) + 3(0) = 120 \] ### Step 7: Determine the minimum value The minimum value of \( Z \) occurs at the point \( (15, 20) \) with: \[ Z = 150 \] ### Final Answer The minimum value of \( Z \) is **150** at the point \( (15, 20) \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

3x + 2y le 12, x ge 1, y ge 2

2x + y ge 8, x + 2y ge 10

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Find graphically the minimum value of Z = 100x + 50y, subject to the constraints x + y le 300, 3x + y le 600, y le x + 200, x ge 0, y ge 0 .

x + y le 10, 4x + 3y le 24,x ge 0, y ge 0