• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
Class 9
MATHS
Find the cube of: 3a-2b...

Find the cube of: `3a-2b`

To view this video, please enable JavaScript and consider upgrading to a web browser thatsupports HTML5 video

Text Solution

AI Generated Solution

The correct Answer is:
To find the cube of \(3a - 2b\), we can use the formula for the cube of a binomial, which is given by: \[ (x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \] In our case, we have: - \(x = 3a\) - \(y = 2b\) Now, we will substitute \(x\) and \(y\) into the formula: \[ (3a - 2b)^3 = (3a)^3 - 3(3a)^2(2b) + 3(3a)(2b)^2 - (2b)^3 \] Now, let's calculate each term step by step: 1. **Calculate \( (3a)^3 \)**: \[ (3a)^3 = 27a^3 \] 2. **Calculate \( 3(3a)^2(2b) \)**: \[ (3a)^2 = 9a^2 \quad \text{so} \quad 3(3a)^2(2b) = 3 \cdot 9a^2 \cdot 2b = 54a^2b \] 3. **Calculate \( 3(3a)(2b)^2 \)**: \[ (2b)^2 = 4b^2 \quad \text{so} \quad 3(3a)(2b)^2 = 3 \cdot 3a \cdot 4b^2 = 36ab^2 \] 4. **Calculate \( (2b)^3 \)**: \[ (2b)^3 = 8b^3 \] Now, we can substitute these values back into the equation: \[ (3a - 2b)^3 = 27a^3 - 54a^2b + 36ab^2 - 8b^3 \] Thus, the final answer is: \[ (3a - 2b)^3 = 27a^3 - 54a^2b + 36ab^2 - 8b^3 \]
Doubtnut Promotions Banner Desktop LightDoubtnut Promotions Banner Desktop DarkDoubtnut Promotions Banner Mobile LightDoubtnut Promotions Banner Mobile Dark

Topper's Solved these Questions

  • EXPANSIONS

    ICSE|Exercise Exercise 4( C)|16 Videos
  • EXPANSIONS

    ICSE|Exercise Exercise 4(D)|24 Videos
  • EXPANSIONS

    ICSE|Exercise Exercise 4(A)|32 Videos
  • DISTANCE FORMULA

    ICSE|Exercise EXERCISE 60|1 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Find the cube of : 3/7

Find the cube of: 3a - (1)/(a) (a ne 0)

Find the cube of (2a-3b)

Find the cube of: 5a +3b

Find the cube of (-2/3)

Find the cubes of : 2.1

Find the cube of (-2/5)

Find the cubes of : 2.5

Find the cube of 2/3dot

Find the cube of : (iv) 3b-2a

ICSE-EXPANSIONS-Exercise 4(B)
  1. Find the cube of: 3a-2b

    01:13

    |

  2. Find the cube of: 5a +3b

    01:23

    |

  3. Find the cube of: 2a + (1)/(2a) (a ne 0)

    01:20

    |

  4. Find the cube of: 3a - (1)/(a) (a ne 0)

    01:36

    |

  5. If a^(2) + (1)/(a^(2))= 47 and a ne 0, find: a+ (1)/(a)

    01:24

    |

  6. If a^(2) + (1)/(a^(2))= 47 and a ne 0, find: a^(3) + (1)/(a^(3))

    03:08

    |

  7. If a^(2) + (1)/(a^(2)) = 18 and a ne 0, find: a- (1)/(a)

    01:38

    |

  8. If a^(2) + (1)/(a^(2)) = 18 and a ne 0, find: a^(3)- (1)/(a^(3))

    03:28

    |

  9. If a + (1)/(a)= p and a ne 0, then show that: a^(3) + (1)/(a^(3))= p (...

    02:33

    |

  10. If a + 2b= 5, then show that: a^(3) + 8b^(3) + 30ab = 125

    01:55

    |

  11. If (a + (1)/(a))^(2) = 3 and a ne 0, then show that: a^(3) + (1)/(a^(3...

    03:12

    |

  12. If a + 2b + c= 0, then show that: a^(3) + 8b^(3) + c^(3)= 6abc

    03:16

    |

  13. Use property to evaluate: 13^(3) + (-8)^(3) + (-5)^(3)

    01:10

    |

  14. Use property to evaluate: 7^(3) + 3^(3) + (-10)^(3)

    01:01

    |

  15. Use property to evaluate: 9^(3) -5^(3) - 4^(3)

    01:05

    |

  16. Use property to evaluate: 38^(3) + (-26)^(3) + (-12)^(3)

    01:56

    |

  17. If a ne 0 and a - (1)/(a)= 3, find : a^(2) + (1)/(a^(2))

    01:27

    |

  18. If a ne 0 and a - (1)/(a)= 3, find : a^(3)- (1)/(a^(3))

    01:41

    |

  19. If a ne 0 and a - (1)/(a)= 4, find a^(2) + (1)/(a^(2))

    01:13

    |

  20. If a ne 0 and a - (1)/(a)= 4, find a^(4) + (1)/(a^(4))

    01:13

    |

Home
Profile
|