Home
Class 9
MATHS
Find the cube of: 3a-2b...

Find the cube of: `3a-2b`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cube of \(3a - 2b\), we can use the formula for the cube of a binomial, which is given by: \[ (x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \] In our case, we have: - \(x = 3a\) - \(y = 2b\) Now, we will substitute \(x\) and \(y\) into the formula: \[ (3a - 2b)^3 = (3a)^3 - 3(3a)^2(2b) + 3(3a)(2b)^2 - (2b)^3 \] Now, let's calculate each term step by step: 1. **Calculate \( (3a)^3 \)**: \[ (3a)^3 = 27a^3 \] 2. **Calculate \( 3(3a)^2(2b) \)**: \[ (3a)^2 = 9a^2 \quad \text{so} \quad 3(3a)^2(2b) = 3 \cdot 9a^2 \cdot 2b = 54a^2b \] 3. **Calculate \( 3(3a)(2b)^2 \)**: \[ (2b)^2 = 4b^2 \quad \text{so} \quad 3(3a)(2b)^2 = 3 \cdot 3a \cdot 4b^2 = 36ab^2 \] 4. **Calculate \( (2b)^3 \)**: \[ (2b)^3 = 8b^3 \] Now, we can substitute these values back into the equation: \[ (3a - 2b)^3 = 27a^3 - 54a^2b + 36ab^2 - 8b^3 \] Thus, the final answer is: \[ (3a - 2b)^3 = 27a^3 - 54a^2b + 36ab^2 - 8b^3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the cube of : 3/7

Find the cube of: 3a - (1)/(a) (a ne 0)

Find the cube of (2a-3b)

Find the cube of: 5a +3b

Find the cube of (-2/3)

Find the cubes of : 2.1

Find the cube of (-2/5)

Find the cubes of : 2.5

Find the cube of 2/3dot

Find the cube of : (iv) 3b-2a