Home
Class 9
MATHS
Given 2 log(10) x + 1 = log(10) 250, fin...

Given `2 log_(10) x + 1 = log_(10) 250`, find :
(i) x
(ii) `log_(10) 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \log_{10} x + 1 = \log_{10} 250 \), we will follow these steps: ### Step 1: Rewrite the equation using logarithmic identities We start with the equation: \[ 2 \log_{10} x + 1 = \log_{10} 250 \] We can use the property of logarithms that states \( a \log_b c = \log_b (c^a) \). Thus, we can rewrite \( 2 \log_{10} x \) as: \[ \log_{10} (x^2) \] Now, the equation becomes: \[ \log_{10} (x^2) + 1 = \log_{10} 250 \] Next, we can express \( 1 \) as \( \log_{10} 10 \): \[ \log_{10} (x^2) + \log_{10} 10 = \log_{10} 250 \] ### Step 2: Combine the logarithms Using the property that \( \log_b a + \log_b c = \log_b (a \cdot c) \), we can combine the left side: \[ \log_{10} (x^2 \cdot 10) = \log_{10} 250 \] ### Step 3: Remove the logarithm Since the logarithms are equal, we can set the arguments equal to each other: \[ x^2 \cdot 10 = 250 \] ### Step 4: Solve for \( x^2 \) Now, we can isolate \( x^2 \): \[ x^2 = \frac{250}{10} = 25 \] ### Step 5: Solve for \( x \) Taking the square root of both sides gives: \[ x = \pm 5 \] Since \( x \) must be positive (as logarithms of negative numbers are undefined), we have: \[ x = 5 \] ### Step 6: Find \( \log_{10} (2x) \) Now we need to find \( \log_{10} (2x) \): \[ 2x = 2 \cdot 5 = 10 \] Thus: \[ \log_{10} (2x) = \log_{10} 10 \] Using the property of logarithms, we know: \[ \log_{10} 10 = 1 \] ### Final Answers: (i) \( x = 5 \) (ii) \( \log_{10} (2x) = 1 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given x = log_(10)12, y = log_(4)2 xx log_(10)9 and z = log_(10) 0.4 , find : (i) x - y - z (ii) 13^(x - y - z)

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Given log_(10)x = a and log_(10) y = b . (i) Write down 10^(a - 1) in terms of x. (ii) Write down 10^(2b) in terms of y. (iii) If log_(10) P = 2a - b , express P in terms of x and y.

If log_(10)x+log_(10)y=2, x-y=15 then :

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . Write 10 ^(a) in terms of x.