Home
Class 12
MATHS
If the vectors hati-hatj, hatj+hatk and ...

If the vectors `hati-hatj, hatj+hatk and veca` form a triangle then `veca` may be (A) `-hati-hatk` (B) `hati-2hatj-hatk` (C) `2hati+hatj+hatjk` (D) hati+hatk`

A

`-hati-hatk`

B

`hati-2hatj-hatk`

C

`2hatj+hatj+hatk`

D

`hati+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given options for the vector \( \vec{a} \) allows the vectors \( \hat{i} - \hat{j} \), \( \hat{j} + \hat{k} \), and \( \vec{a} \) to form a triangle, we can use the property that for three vectors to form a triangle, one vector must be expressible as the sum of the other two. Let: - \( \vec{x} = \hat{i} - \hat{j} \) - \( \vec{y} = \hat{j} + \hat{k} \) - \( \vec{z} = \vec{a} \) We need to check the following conditions: 1. \( \vec{x} = \vec{y} + \vec{z} \) 2. \( \vec{y} = \vec{z} + \vec{x} \) 3. \( \vec{z} = \vec{x} + \vec{y} \) ### Step 1: Check \( \vec{x} = \vec{y} + \vec{z} \) Substituting the vectors: \[ \hat{i} - \hat{j} = (\hat{j} + \hat{k}) + \vec{a} \] Rearranging gives: \[ \vec{a} = \hat{i} - \hat{j} - \hat{j} - \hat{k} = \hat{i} - 2\hat{j} - \hat{k} \] ### Step 2: Check \( \vec{y} = \vec{z} + \vec{x} \) Substituting the vectors: \[ \hat{j} + \hat{k} = \vec{a} + (\hat{i} - \hat{j}) \] Rearranging gives: \[ \vec{a} = \hat{j} + \hat{k} - \hat{i} + \hat{j} = -\hat{i} + 2\hat{j} + \hat{k} \] ### Step 3: Check \( \vec{z} = \vec{x} + \vec{y} \) Substituting the vectors: \[ \vec{a} = (\hat{i} - \hat{j}) + (\hat{j} + \hat{k}) \] This simplifies to: \[ \vec{a} = \hat{i} + \hat{k} \] ### Summary of Results From the three checks, we have: 1. \( \vec{a} = \hat{i} - 2\hat{j} - \hat{k} \) from the first condition. 2. \( \vec{a} = -\hat{i} + 2\hat{j} + \hat{k} \) from the second condition. 3. \( \vec{a} = \hat{i} + \hat{k} \) from the third condition. ### Conclusion The possible vectors \( \vec{a} \) that satisfy the conditions for forming a triangle with the given vectors are: - \( \hat{i} - 2\hat{j} - \hat{k} \) (Option B) - \( \hat{i} + \hat{k} \) (Option D) ### Final Answer The correct options for \( \vec{a} \) are: - (B) \( \hat{i} - 2\hat{j} - \hat{k} \) - (D) \( \hat{i} + \hat{k} \)

To determine which of the given options for the vector \( \vec{a} \) allows the vectors \( \hat{i} - \hat{j} \), \( \hat{j} + \hat{k} \), and \( \vec{a} \) to form a triangle, we can use the property that for three vectors to form a triangle, one vector must be expressible as the sum of the other two. Let: - \( \vec{x} = \hat{i} - \hat{j} \) - \( \vec{y} = \hat{j} + \hat{k} \) - \( \vec{z} = \vec{a} \) We need to check the following conditions: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|81 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

Vectors perpendicular to hati-hatj-hatk and in the plane of hati+hatj+hatk and -hati+hatj+hatk are (A) hati+hatk (B) 2hati+hatj+hatk (C) 3hati+2hatj+hatk (D) -4hati-2hatj-2hatk

The vector (s) equally inclined to the vectors hati-hatj+hatk and hati+hatj-hatk in the plane containing them is (are_ (A) (hati+hatj+hatk)/sqrt(3) (B) hati (C) hati+hatk (D) hati-hatk

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3 is (A) -hati+hatj-2hatk (B) 2hati-hatj+2hatk (C) hati-hatj-hatk (D) hati+hatj-2hatk

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk