Home
Class 12
MATHS
S=sum(i=1)^nsum(j=1)^isum(k=1)^j1...

`S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1`

Text Solution

AI Generated Solution

To solve the problem \( S = \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 \), we will break it down step by step. ### Step 1: Understand the innermost sum The innermost sum \( \sum_{k=1}^{j} 1 \) counts the number of terms from 1 to \( j \). Since we are summing 1 for each term, this sum equals \( j \). \[ \sum_{k=1}^{j} 1 = j \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1=220 , then the value of n equals a. 11 b. 12 c. 10 d. 9

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

The value of sum_(i=0)^oosum_(j=0)^oosum_(k=0)^oo1/(3^i3^j3^k) is

The value of sum_(r=0)^nsum_(s=0)^nsum_(t=0)^nsum_(u=0)^n(1) is

Find the value of underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k)) .

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

If b_i=1-a_i ,n a=sum_(i=1)^n a_i ,n b=sum_(i=1)^n b_i ,t h e nsum_(i=1)^n a_i ,b_i+sum_(i=1)^n(a_i-a)^2= a b b. n a b c. (n+1)a b d. n a b

The mean deviation for n observations x_1, x_2, ......... , x_n from their mean X is given by (a) sum_(i=1)^n(x_i- X ) (b) 1/nsum_(i=1)^n(x_i- X ) (c) sum_(i=1)^n(x_i- X )^2 (d) 1/nsum_(i=1)^n(x_i- X )^2